Information on Result #612118
Linear OA(396, 243, F3, 32) (dual of [243, 147, 33]-code), using an extension Ce(31) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,31], and designed minimum distance d ≥ |I|+1 = 32
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3112, 260, F3, 32) (dual of [260, 148, 33]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(3102, 249, F3, 34) (dual of [249, 147, 35]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
3 | Linear OA(396, 248, F3, 32) (dual of [248, 152, 33]-code) | [i] | ✔ | |
4 | Linear OA(3109, 256, F3, 35) (dual of [256, 147, 36]-code) | [i] | ✔ | |
5 | Linear OA(3102, 255, F3, 32) (dual of [255, 153, 33]-code) | [i] | ✔ | |
6 | Linear OA(3103, 257, F3, 32) (dual of [257, 154, 33]-code) | [i] | ✔ | |
7 | Linear OA(3104, 261, F3, 32) (dual of [261, 157, 33]-code) | [i] | ✔ | |
8 | Linear OA(3119, 266, F3, 38) (dual of [266, 147, 39]-code) | [i] | ✔ | |
9 | Linear OA(3116, 263, F3, 36) (dual of [263, 147, 37]-code) | [i] | ✔ | |
10 | Linear OA(3106, 265, F3, 32) (dual of [265, 159, 33]-code) | [i] | ✔ | |
11 | Linear OA(3108, 270, F3, 32) (dual of [270, 162, 33]-code) | [i] | ✔ | |
12 | Linear OA(3131, 278, F3, 40) (dual of [278, 147, 41]-code) | [i] | ✔ | |
13 | Linear OA(3113, 279, F3, 32) (dual of [279, 166, 33]-code) | [i] | ✔ | |
14 | Linear OA(3114, 281, F3, 32) (dual of [281, 167, 33]-code) | [i] | ✔ | |
15 | Linear OA(3130, 277, F3, 40) (dual of [277, 147, 41]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
16 | Linear OA(3129, 275, F3, 40) (dual of [275, 146, 41]-code) | [i] | ✔ | |
17 | Linear OA(3128, 273, F3, 40) (dual of [273, 145, 41]-code) | [i] | ✔ | |
18 | Linear OA(3127, 271, F3, 40) (dual of [271, 144, 41]-code) | [i] | ✔ | |
19 | Linear OA(3126, 269, F3, 40) (dual of [269, 143, 41]-code) | [i] | ✔ | |
20 | Linear OA(3133, 282, F3, 40) (dual of [282, 149, 41]-code) | [i] | ✔ | |
21 | Linear OA(3132, 280, F3, 40) (dual of [280, 148, 41]-code) | [i] | ✔ | |
22 | Linear OA(3115, 259, F3, 36) (dual of [259, 144, 37]-code) | [i] | ✔ | |
23 | Linear OA(3118, 261, F3, 38) (dual of [261, 143, 39]-code) | [i] | ✔ | |
24 | Linear OA(3114, 257, F3, 36) (dual of [257, 143, 37]-code) | [i] | ✔ | |
25 | Linear OA(3124, 276, F3, 38) (dual of [276, 152, 39]-code) | [i] | ✔ | |
26 | Linear OA(3123, 274, F3, 38) (dual of [274, 151, 39]-code) | [i] | ✔ | |
27 | Linear OA(3122, 272, F3, 38) (dual of [272, 150, 39]-code) | [i] | ✔ | |
28 | Linear OA(3121, 270, F3, 38) (dual of [270, 149, 39]-code) | [i] | ✔ | |
29 | Linear OA(3120, 268, F3, 38) (dual of [268, 148, 39]-code) | [i] | ✔ | |
30 | Linear OA(3108, 251, F3, 35) (dual of [251, 143, 36]-code) | [i] | ✔ | |
31 | Linear OA(3103, 251, F3, 34) (dual of [251, 148, 35]-code) | [i] | ✔ | |
32 | Linear OA(3101, 254, F3, 32) (dual of [254, 153, 33]-code) | [i] | ✔ | |
33 | Linear OA(3107, 267, F3, 32) (dual of [267, 160, 33]-code) | [i] | ✔ | |
34 | Linear OA(3105, 263, F3, 32) (dual of [263, 158, 33]-code) | [i] | ✔ | |
35 | Linear OA(3112, 275, F3, 32) (dual of [275, 163, 33]-code) | [i] | ✔ | |
36 | Linear OA(3131, 279, F3, 40) (dual of [279, 148, 41]-code) | [i] | ✔ |