Information on Result #612141
Linear OA(3155, 2188, F3, 33) (dual of [2188, 2033, 34]-code), using the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,16], and minimum distance d ≥ |{−16,−15,…,16}|+1 = 34 (BCH-bound)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(3155, 1428, F3, 2, 33) (dual of [(1428, 2), 2701, 34]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(3155, 1428, F3, 3, 33) (dual of [(1428, 3), 4129, 34]-NRT-code) | [i] | ||
3 | Linear OOA(3155, 1428, F3, 4, 33) (dual of [(1428, 4), 5557, 34]-NRT-code) | [i] | ||
4 | Linear OOA(3155, 1428, F3, 5, 33) (dual of [(1428, 5), 6985, 34]-NRT-code) | [i] | ||
5 | Digital (122, 155, 1428)-net over F3 | [i] | ||
6 | Linear OA(3171, 2205, F3, 33) (dual of [2205, 2034, 34]-code) | [i] | ✔ | Construction X with Cyclic Codes |
7 | Linear OA(3170, 2203, F3, 35) (dual of [2203, 2033, 36]-code) | [i] | ✔ | |
8 | Linear OA(3172, 2192, F3, 37) (dual of [2192, 2020, 38]-code) | [i] | ✔ | |
9 | Linear OA(3173, 2198, F3, 37) (dual of [2198, 2025, 38]-code) | [i] | ✔ | |
10 | Linear OA(3174, 2207, F3, 37) (dual of [2207, 2033, 38]-code) | [i] | ✔ | |
11 | Linear OA(3171, 2192, F3, 36) (dual of [2192, 2021, 37]-code) | [i] | ✔ | |
12 | Linear OA(3172, 2201, F3, 36) (dual of [2201, 2029, 37]-code) | [i] | ✔ | |
13 | Linear OA(3156, 2203, F3, 33) (dual of [2203, 2047, 34]-code) | [i] | ✔ | |
14 | Linear OA(3191, 2216, F3, 39) (dual of [2216, 2025, 40]-code) | [i] | ✔ | |
15 | Linear OA(3193, 2224, F3, 39) (dual of [2224, 2031, 40]-code) | [i] | ✔ | |
16 | Linear OA(3194, 2227, F3, 39) (dual of [2227, 2033, 40]-code) | [i] | ✔ | |
17 | Linear OA(3191, 2224, F3, 38) (dual of [2224, 2033, 39]-code) | [i] | ✔ | |
18 | Linear OA(3163, 2216, F3, 33) (dual of [2216, 2053, 34]-code) | [i] | ✔ | |
19 | Linear OA(3165, 2224, F3, 33) (dual of [2224, 2059, 34]-code) | [i] | ✔ | |
20 | Linear OA(3166, 2227, F3, 33) (dual of [2227, 2061, 34]-code) | [i] | ✔ | |
21 | Linear OA(3163, 2224, F3, 32) (dual of [2224, 2061, 33]-code) | [i] | ✔ | |
22 | Linear OA(3219, 2240, F3, 43) (dual of [2240, 2021, 44]-code) | [i] | ✔ | |
23 | Linear OA(3216, 2236, F3, 42) (dual of [2236, 2020, 43]-code) | [i] | ✔ | |
24 | Linear OA(3217, 2238, F3, 42) (dual of [2238, 2021, 43]-code) | [i] | ✔ | |
25 | Linear OA(3218, 2251, F3, 42) (dual of [2251, 2033, 43]-code) | [i] | ✔ | |
26 | Linear OA(3214, 2247, F3, 41) (dual of [2247, 2033, 42]-code) | [i] | ✔ | |
27 | Linear OA(3172, 2247, F3, 33) (dual of [2247, 2075, 34]-code) | [i] | ✔ | |
28 | Linear OA(3193, 2226, F3, 39) (dual of [2226, 2033, 40]-code) | [i] | ✔ | |
29 | Linear OA(3165, 2226, F3, 33) (dual of [2226, 2061, 34]-code) | [i] | ✔ | |
30 | Linear OA(3170, 2232, F3, 33) (dual of [2232, 2062, 34]-code) | [i] | ✔ | |
31 | Linear OA(3171, 2246, F3, 33) (dual of [2246, 2075, 34]-code) | [i] | ✔ |