Information on Result #612157
Linear OA(3155, 2187, F3, 34) (dual of [2187, 2032, 35]-code), using an extension Ce(33) of the primitive narrow-sense BCH-code C(I) with length 2186 = 37−1, defining interval I = [1,33], and designed minimum distance d ≥ |I|+1 = 34
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3154, 2186, F3, 33) (dual of [2186, 2032, 34]-code) | [i] | Truncation | |
2 | Linear OA(3172, 2205, F3, 34) (dual of [2205, 2033, 35]-code) | [i] | (u, u+v)-Construction | |
3 | Linear OOA(3155, 1236, F3, 2, 34) (dual of [(1236, 2), 2317, 35]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
4 | Linear OOA(3155, 1236, F3, 3, 34) (dual of [(1236, 3), 3553, 35]-NRT-code) | [i] | ||
5 | Linear OOA(3155, 1236, F3, 4, 34) (dual of [(1236, 4), 4789, 35]-NRT-code) | [i] | ||
6 | Linear OOA(3155, 1236, F3, 5, 34) (dual of [(1236, 5), 6025, 35]-NRT-code) | [i] | ||
7 | Digital (121, 155, 1236)-net over F3 | [i] | ||
8 | Linear OA(3169, 2236, F3, 34) (dual of [2236, 2067, 35]-code) | [i] | Varšamov–Edel Lengthening | |
9 | Linear OA(3170, 2249, F3, 34) (dual of [2249, 2079, 35]-code) | [i] | ||
10 | Linear OA(3171, 2265, F3, 34) (dual of [2265, 2094, 35]-code) | [i] | ||
11 | Linear OA(3172, 2285, F3, 34) (dual of [2285, 2113, 35]-code) | [i] | ||
12 | Linear OA(3173, 2310, F3, 34) (dual of [2310, 2137, 35]-code) | [i] | ||
13 | Linear OA(3174, 2341, F3, 34) (dual of [2341, 2167, 35]-code) | [i] | ||
14 | Linear OA(3175, 2377, F3, 34) (dual of [2377, 2202, 35]-code) | [i] | ||
15 | Linear OA(3162, 2194, F3, 35) (dual of [2194, 2032, 36]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
16 | Linear OA(3156, 2195, F3, 34) (dual of [2195, 2039, 35]-code) | [i] | ✔ | |
17 | Linear OA(3170, 2202, F3, 36) (dual of [2202, 2032, 37]-code) | [i] | ✔ | |
18 | Linear OA(3172, 2200, F3, 37) (dual of [2200, 2028, 38]-code) | [i] | ✔ | |
19 | Linear OA(3173, 2205, F3, 37) (dual of [2205, 2032, 38]-code) | [i] | ✔ | |
20 | Linear OA(3158, 2200, F3, 34) (dual of [2200, 2042, 35]-code) | [i] | ✔ | |
21 | Linear OA(3159, 2205, F3, 34) (dual of [2205, 2046, 35]-code) | [i] | ✔ | |
22 | Linear OA(3181, 2207, F3, 38) (dual of [2207, 2026, 39]-code) | [i] | ✔ | |
23 | Linear OA(3182, 2214, F3, 38) (dual of [2214, 2032, 39]-code) | [i] | ✔ | |
24 | Linear OA(3162, 2214, F3, 34) (dual of [2214, 2052, 35]-code) | [i] | ✔ | |
25 | Linear OA(3163, 2216, F3, 34) (dual of [2216, 2053, 35]-code) | [i] | ✔ | |
26 | Linear OA(3161, 2214, F3, 33) (dual of [2214, 2053, 34]-code) | [i] | ✔ | |
27 | Linear OA(3193, 2223, F3, 40) (dual of [2223, 2030, 41]-code) | [i] | ✔ | |
28 | Linear OA(3194, 2226, F3, 40) (dual of [2226, 2032, 41]-code) | [i] | ✔ | |
29 | Linear OA(3191, 2223, F3, 39) (dual of [2223, 2032, 40]-code) | [i] | ✔ | |
30 | Linear OA(3165, 2223, F3, 34) (dual of [2223, 2058, 35]-code) | [i] | ✔ | |
31 | Linear OA(3166, 2226, F3, 34) (dual of [2226, 2060, 35]-code) | [i] | ✔ | |
32 | Linear OA(3163, 2223, F3, 33) (dual of [2223, 2060, 34]-code) | [i] | ✔ | |
33 | Linear OA(3206, 2238, F3, 41) (dual of [2238, 2032, 42]-code) | [i] | ✔ | |
34 | Linear OA(3172, 2239, F3, 34) (dual of [2239, 2067, 35]-code) | [i] | ✔ | |
35 | Linear OA(3218, 2250, F3, 43) (dual of [2250, 2032, 44]-code) | [i] | ✔ | |
36 | Linear OA(3214, 2246, F3, 42) (dual of [2246, 2032, 43]-code) | [i] | ✔ | |
37 | Linear OA(3228, 2260, F3, 44) (dual of [2260, 2032, 45]-code) | [i] | ✔ | |
38 | Linear OA(3193, 2225, F3, 40) (dual of [2225, 2032, 41]-code) | [i] | ✔ | |
39 | Linear OA(3165, 2225, F3, 34) (dual of [2225, 2060, 35]-code) | [i] | ✔ | |
40 | Linear OA(3203, 2229, F3, 41) (dual of [2229, 2026, 42]-code) | [i] | ✔ | |
41 | Linear OA(3204, 2236, F3, 41) (dual of [2236, 2032, 42]-code) | [i] | ✔ | |
42 | Linear OA(3170, 2231, F3, 34) (dual of [2231, 2061, 35]-code) | [i] | ✔ | |
43 | Linear OA(3171, 2238, F3, 34) (dual of [2238, 2067, 35]-code) | [i] | ✔ | |
44 | Linear OA(3169, 2236, F3, 33) (dual of [2236, 2067, 34]-code) | [i] | ✔ | |
45 | Linear OA(3213, 2245, F3, 42) (dual of [2245, 2032, 43]-code) | [i] | ✔ | |
46 | Linear OA(3192, 2218, F3, 40) (dual of [2218, 2026, 41]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
47 | Linear OA(3190, 2216, F3, 39) (dual of [2216, 2026, 40]-code) | [i] | ✔ | |
48 | Linear OA(3185, 2219, F3, 38) (dual of [2219, 2034, 39]-code) | [i] | ✔ | |
49 | Linear OA(3184, 2217, F3, 38) (dual of [2217, 2033, 39]-code) | [i] | ✔ | |
50 | Linear OA(3171, 2197, F3, 37) (dual of [2197, 2026, 38]-code) | [i] | ✔ | |
51 | Linear OA(3174, 2209, F3, 36) (dual of [2209, 2035, 37]-code) | [i] | ✔ | |
52 | Linear OA(3173, 2207, F3, 36) (dual of [2207, 2034, 37]-code) | [i] | ✔ | |
53 | Linear OA(3172, 2205, F3, 36) (dual of [2205, 2033, 37]-code) | [i] | ✔ | |
54 | Linear OA(3164, 2197, F3, 35) (dual of [2197, 2033, 36]-code) | [i] | ✔ | |
55 | Linear OA(3157, 2197, F3, 34) (dual of [2197, 2040, 35]-code) | [i] | ✔ | |
56 | Linear OA(3160, 2209, F3, 33) (dual of [2209, 2049, 34]-code) | [i] | ✔ | |
57 | Linear OA(3159, 2207, F3, 33) (dual of [2207, 2048, 34]-code) | [i] | ✔ | |
58 | Linear OA(3161, 2208, F3, 34) (dual of [2208, 2047, 35]-code) | [i] | ✔ | |
59 | Linear OA(3164, 2218, F3, 34) (dual of [2218, 2054, 35]-code) | [i] | ✔ | |
60 | Linear OA(3162, 2216, F3, 33) (dual of [2216, 2054, 34]-code) | [i] | ✔ | |
61 | Linear OOA(3155, 1093, F3, 2, 34) (dual of [(1093, 2), 2031, 35]-NRT-code) | [i] | OOA Folding | |
62 | Linear OOA(3155, 729, F3, 3, 34) (dual of [(729, 3), 2032, 35]-NRT-code) | [i] | ||
63 | Linear OOA(3155, 546, F3, 4, 34) (dual of [(546, 4), 2029, 35]-NRT-code) | [i] | ||
64 | Linear OOA(3155, 437, F3, 5, 34) (dual of [(437, 5), 2030, 35]-NRT-code) | [i] |