Information on Result #612201

Linear OA(3169, 2188, F3, 37) (dual of [2188, 2019, 38]-code), using the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,18], and minimum distance d ≥ |{−18,−17,…,18}|+1 = 38 (BCH-bound)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(3168, 2187, F3, 36) (dual of [2187, 2019, 37]-code) [i]Truncation
2Linear OA(3183, 2238, F3, 37) (dual of [2238, 2055, 38]-code) [i]VarÅ¡amov–Edel Lengthening
3Linear OA(3184, 2252, F3, 37) (dual of [2252, 2068, 38]-code) [i]
4Linear OA(3185, 2269, F3, 37) (dual of [2269, 2084, 38]-code) [i]
5Linear OA(3186, 2291, F3, 37) (dual of [2291, 2105, 38]-code) [i]
6Linear OA(3187, 2318, F3, 37) (dual of [2318, 2131, 38]-code) [i]
7Linear OA(3188, 2350, F3, 37) (dual of [2350, 2162, 38]-code) [i]
8Linear OA(3189, 2389, F3, 37) (dual of [2389, 2200, 38]-code) [i]
9Linear OA(3190, 2435, F3, 37) (dual of [2435, 2245, 38]-code) [i]
10Linear OA(3191, 2488, F3, 37) (dual of [2488, 2297, 38]-code) [i]
11Linear OA(3192, 2548, F3, 37) (dual of [2548, 2356, 38]-code) [i]
12Linear OA(3187, 2207, F3, 37) (dual of [2207, 2020, 38]-code) [i]Construction X with Cyclic Codes
13Linear OA(3184, 2203, F3, 39) (dual of [2203, 2019, 40]-code) [i]
14Linear OA(3170, 2203, F3, 35) (dual of [2203, 2033, 36]-code) [i]
15Linear OA(3172, 2192, F3, 37) (dual of [2192, 2020, 38]-code) [i]
16Linear OA(3173, 2198, F3, 37) (dual of [2198, 2025, 38]-code) [i]
17Linear OA(3174, 2207, F3, 37) (dual of [2207, 2033, 38]-code) [i]
18Linear OA(3171, 2192, F3, 36) (dual of [2192, 2021, 37]-code) [i]
19Linear OA(3172, 2201, F3, 36) (dual of [2201, 2029, 37]-code) [i]
20Linear OA(3205, 2216, F3, 43) (dual of [2216, 2011, 44]-code) [i]
21Linear OA(3207, 2224, F3, 43) (dual of [2224, 2017, 44]-code) [i]
22Linear OA(3208, 2227, F3, 43) (dual of [2227, 2019, 44]-code) [i]
23Linear OA(3205, 2224, F3, 42) (dual of [2224, 2019, 43]-code) [i]
24Linear OA(3202, 2208, F3, 41) (dual of [2208, 2006, 42]-code) [i]
25Linear OA(3203, 2222, F3, 41) (dual of [2222, 2019, 42]-code) [i]
26Linear OA(3201, 2220, F3, 40) (dual of [2220, 2019, 41]-code) [i]
27Linear OA(3177, 2216, F3, 37) (dual of [2216, 2039, 38]-code) [i]
28Linear OA(3179, 2224, F3, 37) (dual of [2224, 2045, 38]-code) [i]
29Linear OA(3180, 2227, F3, 37) (dual of [2227, 2047, 38]-code) [i]
30Linear OA(3177, 2224, F3, 36) (dual of [2224, 2047, 37]-code) [i]
31Linear OA(3174, 2208, F3, 35) (dual of [2208, 2034, 36]-code) [i]
32Linear OA(3175, 2222, F3, 35) (dual of [2222, 2047, 36]-code) [i]
33Linear OA(3173, 2220, F3, 34) (dual of [2220, 2047, 35]-code) [i]
34Linear OA(3228, 2247, F3, 45) (dual of [2247, 2019, 46]-code) [i]
35Linear OA(3191, 2240, F3, 37) (dual of [2240, 2049, 38]-code) [i]
36Linear OA(3188, 2236, F3, 36) (dual of [2236, 2048, 37]-code) [i]
37Linear OA(3189, 2238, F3, 36) (dual of [2238, 2049, 37]-code) [i]
38Linear OA(3190, 2251, F3, 36) (dual of [2251, 2061, 37]-code) [i]
39Linear OA(3250, 2269, F3, 48) (dual of [2269, 2019, 49]-code) [i]
40Linear OA(3207, 2226, F3, 43) (dual of [2226, 2019, 44]-code) [i]
41Linear OA(3179, 2226, F3, 37) (dual of [2226, 2047, 38]-code) [i]
42Linear OA(3226, 2232, F3, 45) (dual of [2232, 2006, 46]-code) [i]
43Linear OA(3227, 2246, F3, 45) (dual of [2246, 2019, 46]-code) [i]
44Linear OOA(3169, 1094, F3, 2, 37) (dual of [(1094, 2), 2019, 38]-NRT-code) [i]OOA Folding
45Linear OOA(3169, 547, F3, 4, 37) (dual of [(547, 4), 2019, 38]-NRT-code) [i]