Information on Result #612336
Linear OA(3225, 2188, F3, 49) (dual of [2188, 1963, 50]-code), using the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,24], and minimum distance d ≥ |{−24,−23,…,24}|+1 = 50 (BCH-bound)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3224, 2187, F3, 48) (dual of [2187, 1963, 49]-code) | [i] | Truncation | |
2 | Linear OA(3236, 2235, F3, 49) (dual of [2235, 1999, 50]-code) | [i] | Varšamov–Edel Lengthening | |
3 | Linear OA(3237, 2252, F3, 49) (dual of [2252, 2015, 50]-code) | [i] | ||
4 | Linear OA(3238, 2274, F3, 49) (dual of [2274, 2036, 50]-code) | [i] | ||
5 | Linear OA(3239, 2301, F3, 49) (dual of [2301, 2062, 50]-code) | [i] | ||
6 | Linear OA(3240, 2335, F3, 49) (dual of [2335, 2095, 50]-code) | [i] | ||
7 | Linear OA(3241, 2375, F3, 49) (dual of [2375, 2134, 50]-code) | [i] | ||
8 | Linear OA(3242, 2420, F3, 49) (dual of [2420, 2178, 50]-code) | [i] | ||
9 | Linear OA(3243, 2469, F3, 49) (dual of [2469, 2226, 50]-code) | [i] | ||
10 | Linear OA(3244, 2522, F3, 49) (dual of [2522, 2278, 50]-code) | [i] | ||
11 | Linear OA(3245, 2578, F3, 49) (dual of [2578, 2333, 50]-code) | [i] | ||
12 | Linear OA(3246, 2637, F3, 49) (dual of [2637, 2391, 50]-code) | [i] | ||
13 | Linear OA(3247, 2697, F3, 49) (dual of [2697, 2450, 50]-code) | [i] | ||
14 | Linear OA(3248, 2759, F3, 49) (dual of [2759, 2511, 50]-code) | [i] | ||
15 | Linear OA(3249, 2213, F3, 49) (dual of [2213, 1964, 50]-code) | [i] | ✔ | Construction X with Cyclic Codes |
16 | Linear OA(3240, 2203, F3, 51) (dual of [2203, 1963, 52]-code) | [i] | ✔ | |
17 | Linear OA(3226, 2203, F3, 47) (dual of [2203, 1977, 48]-code) | [i] | ✔ | |
18 | Linear OA(3228, 2192, F3, 49) (dual of [2192, 1964, 50]-code) | [i] | ✔ | |
19 | Linear OA(3229, 2198, F3, 49) (dual of [2198, 1969, 50]-code) | [i] | ✔ | |
20 | Linear OA(3230, 2207, F3, 49) (dual of [2207, 1977, 50]-code) | [i] | ✔ | |
21 | Linear OA(3227, 2192, F3, 48) (dual of [2192, 1965, 49]-code) | [i] | ✔ | |
22 | Linear OA(3228, 2201, F3, 48) (dual of [2201, 1973, 49]-code) | [i] | ✔ | |
23 | Linear OA(3233, 2216, F3, 49) (dual of [2216, 1983, 50]-code) | [i] | ✔ | |
24 | Linear OA(3235, 2224, F3, 49) (dual of [2224, 1989, 50]-code) | [i] | ✔ | |
25 | Linear OA(3236, 2227, F3, 49) (dual of [2227, 1991, 50]-code) | [i] | ✔ | |
26 | Linear OA(3233, 2224, F3, 48) (dual of [2224, 1991, 49]-code) | [i] | ✔ | |
27 | Linear OA(3230, 2208, F3, 47) (dual of [2208, 1978, 48]-code) | [i] | ✔ | |
28 | Linear OA(3231, 2222, F3, 47) (dual of [2222, 1991, 48]-code) | [i] | ✔ | |
29 | Linear OA(3229, 2220, F3, 46) (dual of [2220, 1991, 47]-code) | [i] | ✔ | |
30 | Linear OA(3247, 2240, F3, 49) (dual of [2240, 1993, 50]-code) | [i] | ✔ | |
31 | Linear OA(3249, 2254, F3, 49) (dual of [2254, 2005, 50]-code) | [i] | ✔ | |
32 | Linear OA(3244, 2236, F3, 48) (dual of [2236, 1992, 49]-code) | [i] | ✔ | |
33 | Linear OA(3245, 2238, F3, 48) (dual of [2238, 1993, 49]-code) | [i] | ✔ | |
34 | Linear OA(3246, 2251, F3, 48) (dual of [2251, 2005, 49]-code) | [i] | ✔ | |
35 | Linear OA(3242, 2247, F3, 47) (dual of [2247, 2005, 48]-code) | [i] | ✔ | |
36 | Linear OA(3250, 2269, F3, 48) (dual of [2269, 2019, 49]-code) | [i] | ✔ | |
37 | Linear OA(3235, 2226, F3, 49) (dual of [2226, 1991, 50]-code) | [i] | ✔ | |
38 | Linear OOA(3225, 1094, F3, 2, 49) (dual of [(1094, 2), 1963, 50]-NRT-code) | [i] | OOA Folding | |
39 | Linear OOA(3225, 547, F3, 4, 49) (dual of [(547, 4), 1963, 50]-NRT-code) | [i] |