Information on Result #612731
Linear OA(445, 256, F4, 15) (dual of [256, 211, 16]-code), using an extension Ce(14) of the primitive narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [1,14], and designed minimum distance d ≥ |I|+1 = 15
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(452, 264, F4, 15) (dual of [264, 212, 16]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(453, 266, F4, 15) (dual of [266, 213, 16]-code) | [i] | ||
3 | Linear OA(450, 261, F4, 17) (dual of [261, 211, 18]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
4 | Linear OA(445, 260, F4, 15) (dual of [260, 215, 16]-code) | [i] | ✔ | |
5 | Linear OA(453, 261, F4, 18) (dual of [261, 208, 19]-code) | [i] | ✔ | |
6 | Linear OA(454, 265, F4, 18) (dual of [265, 211, 19]-code) | [i] | ✔ | |
7 | Linear OA(446, 265, F4, 15) (dual of [265, 219, 16]-code) | [i] | ✔ | |
8 | Linear OA(459, 270, F4, 19) (dual of [270, 211, 20]-code) | [i] | ✔ | |
9 | Linear OA(449, 272, F4, 15) (dual of [272, 223, 16]-code) | [i] | ✔ | |
10 | Linear OA(468, 279, F4, 21) (dual of [279, 211, 22]-code) | [i] | ✔ | |
11 | Linear OA(465, 276, F4, 20) (dual of [276, 211, 21]-code) | [i] | ✔ | |
12 | Linear OA(451, 277, F4, 15) (dual of [277, 226, 16]-code) | [i] | ✔ | |
13 | Linear OA(452, 279, F4, 15) (dual of [279, 227, 16]-code) | [i] | ✔ | |
14 | Linear OA(473, 281, F4, 22) (dual of [281, 208, 23]-code) | [i] | ✔ | |
15 | Linear OA(467, 278, F4, 21) (dual of [278, 211, 22]-code) | [i] | ✔ | |
16 | Linear OA(474, 284, F4, 22) (dual of [284, 210, 23]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
17 | Linear OA(473, 282, F4, 22) (dual of [282, 209, 23]-code) | [i] | ✔ | |
18 | Linear OA(471, 279, F4, 22) (dual of [279, 208, 23]-code) | [i] | ✔ | |
19 | Linear OA(467, 275, F4, 21) (dual of [275, 208, 22]-code) | [i] | ✔ | |
20 | Linear OA(467, 277, F4, 21) (dual of [277, 210, 22]-code) | [i] | ✔ | |
21 | Linear OA(466, 275, F4, 21) (dual of [275, 209, 22]-code) | [i] | ✔ | |
22 | Linear OA(465, 273, F4, 21) (dual of [273, 208, 22]-code) | [i] | ✔ | |
23 | Linear OA(468, 281, F4, 20) (dual of [281, 213, 21]-code) | [i] | ✔ | |
24 | Linear OA(466, 278, F4, 20) (dual of [278, 212, 21]-code) | [i] | ✔ | |
25 | Linear OA(460, 272, F4, 19) (dual of [272, 212, 20]-code) | [i] | ✔ | |
26 | Linear OA(451, 263, F4, 17) (dual of [263, 212, 18]-code) | [i] | ✔ | |
27 | Linear OA(448, 268, F4, 15) (dual of [268, 220, 16]-code) | [i] | ✔ | |
28 | Linear OA(450, 274, F4, 15) (dual of [274, 224, 16]-code) | [i] | ✔ | |
29 | Linear OA(453, 281, F4, 15) (dual of [281, 228, 16]-code) | [i] | ✔ |