Information on Result #612789
Linear OA(451, 256, F4, 18) (dual of [256, 205, 19]-code), using an extension Ce(17) of the primitive narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [1,17], and designed minimum distance d ≥ |I|+1 = 18
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(460, 266, F4, 18) (dual of [266, 206, 19]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(462, 271, F4, 18) (dual of [271, 209, 19]-code) | [i] | ||
3 | Linear OA(455, 260, F4, 19) (dual of [260, 205, 20]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
4 | Linear OA(451, 258, F4, 18) (dual of [258, 207, 19]-code) | [i] | ✔ | |
5 | Linear OA(460, 265, F4, 20) (dual of [265, 205, 21]-code) | [i] | ✔ | |
6 | Linear OA(462, 267, F4, 21) (dual of [267, 205, 22]-code) | [i] | ✔ | |
7 | Linear OA(453, 261, F4, 18) (dual of [261, 208, 19]-code) | [i] | ✔ | |
8 | Linear OA(454, 265, F4, 18) (dual of [265, 211, 19]-code) | [i] | ✔ | |
9 | Linear OA(467, 272, F4, 22) (dual of [272, 205, 23]-code) | [i] | ✔ | |
10 | Linear OA(455, 270, F4, 18) (dual of [270, 215, 19]-code) | [i] | ✔ | |
11 | Linear OA(473, 277, F4, 23) (dual of [277, 204, 24]-code) | [i] | ✔ | |
12 | Linear OA(474, 279, F4, 23) (dual of [279, 205, 24]-code) | [i] | ✔ | |
13 | Linear OA(457, 276, F4, 18) (dual of [276, 219, 19]-code) | [i] | ✔ | |
14 | Linear OA(483, 288, F4, 25) (dual of [288, 205, 26]-code) | [i] | ✔ | |
15 | Linear OA(461, 281, F4, 18) (dual of [281, 220, 19]-code) | [i] | ✔ | |
16 | Linear OA(480, 283, F4, 24) (dual of [283, 203, 25]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
17 | Linear OA(482, 284, F4, 25) (dual of [284, 202, 26]-code) | [i] | ✔ | |
18 | Linear OA(479, 281, F4, 24) (dual of [281, 202, 25]-code) | [i] | ✔ | |
19 | Linear OA(472, 274, F4, 23) (dual of [274, 202, 24]-code) | [i] | ✔ | |
20 | Linear OA(476, 283, F4, 23) (dual of [283, 207, 24]-code) | [i] | ✔ | |
21 | Linear OA(475, 281, F4, 23) (dual of [281, 206, 24]-code) | [i] | ✔ | |
22 | Linear OA(468, 274, F4, 22) (dual of [274, 206, 23]-code) | [i] | ✔ | |
23 | Linear OA(461, 263, F4, 21) (dual of [263, 202, 22]-code) | [i] | ✔ | |
24 | Linear OA(461, 267, F4, 20) (dual of [267, 206, 21]-code) | [i] | ✔ | |
25 | Linear OA(467, 275, F4, 21) (dual of [275, 208, 22]-code) | [i] | ✔ | |
26 | Linear OA(456, 272, F4, 18) (dual of [272, 216, 19]-code) | [i] | ✔ | |
27 | Linear OA(462, 284, F4, 18) (dual of [284, 222, 19]-code) | [i] | ✔ | |
28 | Linear OA(461, 282, F4, 18) (dual of [282, 221, 19]-code) | [i] | ✔ | |
29 | Linear OA(459, 279, F4, 18) (dual of [279, 220, 19]-code) | [i] | ✔ |