Information on Result #616954
Linear OA(2597, 390626, F25, 25) (dual of [390626, 390529, 26]-code), using the expurgated narrow-sense BCH-code C(I) with length 390626 | 258−1, defining interval I = [0,12], and minimum distance d ≥ |{−12,−11,…,12}|+1 = 26 (BCH-bound)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2597, 268600, F25, 2, 25) (dual of [(268600, 2), 537103, 26]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Digital (72, 97, 268600)-net over F25 | [i] | ||
3 | Linear OA(25109, 390639, F25, 25) (dual of [390639, 390530, 26]-code) | [i] | ✔ | Construction X with Cyclic Codes |
4 | Linear OA(25106, 390635, F25, 27) (dual of [390635, 390529, 28]-code) | [i] | ✔ | |
5 | Linear OA(2598, 390635, F25, 25) (dual of [390635, 390537, 26]-code) | [i] | ✔ | |
6 | Linear OA(25100, 390645, F25, 25) (dual of [390645, 390545, 26]-code) | [i] | ✔ | |
7 | Linear OA(25102, 390652, F25, 25) (dual of [390652, 390550, 26]-code) | [i] | ✔ | |
8 | Linear OA(25103, 390655, F25, 25) (dual of [390655, 390552, 26]-code) | [i] | ✔ | |
9 | Linear OA(25104, 390657, F25, 25) (dual of [390657, 390553, 26]-code) | [i] | ✔ | |
10 | Linear OA(25101, 390652, F25, 24) (dual of [390652, 390551, 25]-code) | [i] | ✔ | |
11 | Linear OA(25102, 390655, F25, 24) (dual of [390655, 390553, 25]-code) | [i] | ✔ | |
12 | Linear OA(25107, 390668, F25, 25) (dual of [390668, 390561, 26]-code) | [i] | ✔ | |
13 | Linear OA(25109, 390678, F25, 25) (dual of [390678, 390569, 26]-code) | [i] | ✔ | |
14 | Linear OA(25105, 390659, F25, 24) (dual of [390659, 390554, 25]-code) | [i] | ✔ | Construction XX with a Chain of Cyclic Codes |
15 | Linear OOA(2597, 32552, F25, 25, 25) (dual of [(32552, 25), 813703, 26]-NRT-code) | [i] | OOA Folding and Stacking with Additional Row |