Information on Result #621947
Linear OA(2235, 255, F2, 111) (dual of [255, 20, 112]-code), using code C2 for u = 8 by de Boer and Brouwer
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2244, 264, F2, 113) (dual of [264, 20, 114]-code) | [i] | ✔ | Construction X with De Boer–Brouwer Codes |
2 | Linear OA(2253, 267, F2, 119) (dual of [267, 14, 120]-code) | [i] | ✔ | |
3 | Linear OA(2254, 271, F2, 119) (dual of [271, 17, 120]-code) | [i] | ✔ | |
4 | Linear OA(2255, 275, F2, 119) (dual of [275, 20, 120]-code) | [i] | ✔ | |
5 | Linear OA(2250, 264, F2, 117) (dual of [264, 14, 118]-code) | [i] | ✔ | |
6 | Linear OA(2251, 267, F2, 117) (dual of [267, 16, 118]-code) | [i] | ✔ | |
7 | Linear OA(2252, 272, F2, 117) (dual of [272, 20, 118]-code) | [i] | ✔ | |
8 | Linear OA(2247, 263, F2, 115) (dual of [263, 16, 116]-code) | [i] | ✔ | |
9 | Linear OA(2248, 268, F2, 115) (dual of [268, 20, 116]-code) | [i] | ✔ | |
10 | Linear OA(2236, 264, F2, 97) (dual of [264, 28, 98]-code) | [i] | ✔ | |
11 | Linear OA(2257, 279, F2, 111) (dual of [279, 22, 112]-code) | [i] | ✔ | |
12 | Linear OA(2260, 283, F2, 111) (dual of [283, 23, 112]-code) | [i] | ✔ | |
13 | Linear OA(2260, 286, F2, 110) (dual of [286, 26, 111]-code) | [i] | ✔ | |
14 | Linear OA(2254, 276, F2, 109) (dual of [276, 22, 110]-code) | [i] | ✔ | |
15 | Linear OA(2257, 280, F2, 109) (dual of [280, 23, 110]-code) | [i] | ✔ | |
16 | Linear OA(2258, 283, F2, 109) (dual of [283, 25, 110]-code) | [i] | ✔ | |
17 | Linear OA(2251, 273, F2, 107) (dual of [273, 22, 108]-code) | [i] | ✔ | |
18 | Linear OA(2253, 276, F2, 107) (dual of [276, 23, 108]-code) | [i] | ✔ | |
19 | Linear OA(2254, 279, F2, 107) (dual of [279, 25, 108]-code) | [i] | ✔ | |
20 | Linear OA(2256, 284, F2, 107) (dual of [284, 28, 108]-code) | [i] | ✔ | |
21 | Linear OA(2248, 270, F2, 105) (dual of [270, 22, 106]-code) | [i] | ✔ | |
22 | Linear OA(2250, 273, F2, 105) (dual of [273, 23, 106]-code) | [i] | ✔ | |
23 | Linear OA(2251, 276, F2, 105) (dual of [276, 25, 106]-code) | [i] | ✔ | |
24 | Linear OA(2252, 278, F2, 105) (dual of [278, 26, 106]-code) | [i] | ✔ | |
25 | Linear OA(2245, 267, F2, 103) (dual of [267, 22, 104]-code) | [i] | ✔ | |
26 | Linear OA(2246, 271, F2, 103) (dual of [271, 25, 104]-code) | [i] | ✔ | |
27 | Linear OA(2247, 275, F2, 103) (dual of [275, 28, 104]-code) | [i] | ✔ | |
28 | Linear OA(2243, 267, F2, 101) (dual of [267, 24, 102]-code) | [i] | ✔ | |
29 | Linear OA(2244, 272, F2, 101) (dual of [272, 28, 102]-code) | [i] | ✔ | |
30 | Linear OA(2239, 263, F2, 99) (dual of [263, 24, 100]-code) | [i] | ✔ | |
31 | Linear OA(2240, 268, F2, 99) (dual of [268, 28, 100]-code) | [i] | ✔ | |
32 | Linear OA(2255, 282, F2, 107) (dual of [282, 27, 108]-code) | [i] | ✔ | |
33 | Linear OA(2260, 288, F2, 109) (dual of [288, 28, 110]-code) | [i] | ✔ | |
34 | Linear OA(2260, 273, F2, 121) (dual of [273, 13, 122]-code) | [i] | ✔ | Construction XX with a Chain of De Boer–Brouwer Codes |
35 | Linear OA(2260, 281, F2, 113) (dual of [281, 21, 114]-code) | [i] | ✔ | |
36 | Linear OOA(2235, 85, F2, 3, 111) (dual of [(85, 3), 20, 112]-NRT-code) | [i] | OOA Folding | |
37 | Linear OOA(2235, 51, F2, 5, 111) (dual of [(51, 5), 20, 112]-NRT-code) | [i] |