Information on Result #63138
There is no OOA(290, 48, S2, 2, 60), because the (dual) Plotkin bound for OOAs shows that M ≥ 79228 162514 264337 593543 950336 / 61 > 290
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OOA(292, 48, S2, 3, 62) | [i] | m-Reduction for OOAs | |
2 | No OOA(293, 48, S2, 3, 63) | [i] | ||
3 | No OOA(294, 48, S2, 3, 64) | [i] | ||
4 | No OOA(295, 48, S2, 3, 65) | [i] | ||
5 | No OOA(296, 48, S2, 3, 66) | [i] | ||
6 | No OOA(297, 48, S2, 3, 67) | [i] | ||
7 | No OOA(298, 48, S2, 3, 68) | [i] | ||
8 | No OOA(299, 48, S2, 3, 69) | [i] | ||
9 | No OOA(2100, 48, S2, 3, 70) | [i] | ||
10 | No OOA(2101, 48, S2, 3, 71) | [i] | ||
11 | No OOA(2102, 48, S2, 3, 72) | [i] | ||
12 | No OOA(2103, 48, S2, 3, 73) | [i] | ||
13 | No OOA(2104, 48, S2, 3, 74) | [i] | ||
14 | No OOA(2105, 48, S2, 3, 75) | [i] | ||
15 | No OOA(2106, 48, S2, 3, 76) | [i] | ||
16 | No OOA(2107, 48, S2, 3, 77) | [i] | ||
17 | No OOA(2108, 48, S2, 3, 78) | [i] | ||
18 | No OOA(2109, 48, S2, 3, 79) | [i] | ||
19 | No OOA(2110, 48, S2, 3, 80) | [i] | ||
20 | No OOA(2111, 48, S2, 3, 81) | [i] | ||
21 | No OOA(2112, 48, S2, 3, 82) | [i] | ||
22 | No OOA(2113, 48, S2, 3, 83) | [i] | ||
23 | No OOA(2114, 48, S2, 3, 84) | [i] | ||
24 | No OOA(2115, 48, S2, 3, 85) | [i] | ||
25 | No OOA(2116, 48, S2, 3, 86) | [i] | ||
26 | No OOA(2117, 48, S2, 3, 87) | [i] | ||
27 | No OOA(2118, 48, S2, 3, 88) | [i] | ||
28 | No OOA(290, 48, S2, 3, 60) | [i] | Depth Reduction | |
29 | No OOA(290, 48, S2, 4, 60) | [i] | ||
30 | No OOA(290, 48, S2, 5, 60) | [i] | ||
31 | No OOA(290, 48, S2, 6, 60) | [i] | ||
32 | No OOA(290, 48, S2, 7, 60) | [i] | ||
33 | No OOA(290, 48, S2, 8, 60) | [i] | ||
34 | No (30, 90, 48)-net in base 2 | [i] | Extracting Embedded OOA |