Information on Result #644764
Linear OA(1633, 64, F16, 27) (dual of [64, 31, 28]-code), using algebraic-geometric code AG(F,36P) based on function field F/F16 with g(F) = 6 and N(F) ≥ 65, using
- the Hermitian function field over F16 [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(1693, 120, F16, 55) (dual of [120, 27, 56]-code) | [i] | Repeating Each Code Word | |
2 | Linear OA(1692, 118, F16, 55) (dual of [118, 26, 56]-code) | [i] | ||
3 | Linear OA(1691, 116, F16, 55) (dual of [116, 25, 56]-code) | [i] | ||
4 | Linear OA(1690, 114, F16, 55) (dual of [114, 24, 56]-code) | [i] | ||
5 | Linear OA(1689, 112, F16, 55) (dual of [112, 23, 56]-code) | [i] | ||
6 | Linear OA(1688, 110, F16, 55) (dual of [110, 22, 56]-code) | [i] | ||
7 | Linear OA(1687, 108, F16, 55) (dual of [108, 21, 56]-code) | [i] | ||
8 | Linear OA(1686, 106, F16, 55) (dual of [106, 20, 56]-code) | [i] | ||
9 | Linear OA(1685, 104, F16, 55) (dual of [104, 19, 56]-code) | [i] | ||
10 | Linear OA(1684, 102, F16, 55) (dual of [102, 18, 56]-code) | [i] | ||
11 | Linear OA(1691, 122, F16, 55) (dual of [122, 31, 56]-code) | [i] | (u, u+v)-Construction | |
12 | Linear OA(2196, 320, F2, 55) (dual of [320, 124, 56]-code) | [i] | Concatenation of Two Codes | |
13 | Linear OA(2195, 315, F2, 55) (dual of [315, 120, 56]-code) | [i] | ||
14 | Linear OA(2194, 310, F2, 55) (dual of [310, 116, 56]-code) | [i] | ||
15 | Linear OA(2193, 305, F2, 55) (dual of [305, 112, 56]-code) | [i] | ||
16 | Linear OA(2192, 300, F2, 55) (dual of [300, 108, 56]-code) | [i] | ||
17 | Linear OA(2191, 295, F2, 55) (dual of [295, 104, 56]-code) | [i] | ||
18 | Linear OA(2190, 290, F2, 55) (dual of [290, 100, 56]-code) | [i] | ||
19 | Linear OA(2189, 285, F2, 55) (dual of [285, 96, 56]-code) | [i] | ||
20 | Linear OA(2188, 280, F2, 55) (dual of [280, 92, 56]-code) | [i] | ||
21 | Linear OA(2187, 275, F2, 55) (dual of [275, 88, 56]-code) | [i] | ||
22 | Linear OA(2186, 270, F2, 55) (dual of [270, 84, 56]-code) | [i] | ||
23 | Linear OA(2185, 265, F2, 55) (dual of [265, 80, 56]-code) | [i] | ||
24 | Linear OA(4130, 192, F4, 55) (dual of [192, 62, 56]-code) | [i] | ||
25 | Linear OA(4129, 189, F4, 55) (dual of [189, 60, 56]-code) | [i] | ||
26 | Linear OA(4128, 186, F4, 55) (dual of [186, 58, 56]-code) | [i] | ||
27 | Linear OA(4127, 183, F4, 55) (dual of [183, 56, 56]-code) | [i] | ||
28 | Linear OA(4126, 180, F4, 55) (dual of [180, 54, 56]-code) | [i] | ||
29 | Linear OA(4125, 177, F4, 55) (dual of [177, 52, 56]-code) | [i] | ||
30 | Linear OA(4124, 174, F4, 55) (dual of [174, 50, 56]-code) | [i] | ||
31 | Linear OA(4123, 171, F4, 55) (dual of [171, 48, 56]-code) | [i] | ||
32 | Linear OA(4122, 168, F4, 55) (dual of [168, 46, 56]-code) | [i] | ||
33 | Linear OA(4121, 165, F4, 55) (dual of [165, 44, 56]-code) | [i] | ||
34 | Linear OA(4120, 162, F4, 55) (dual of [162, 42, 56]-code) | [i] | ||
35 | Linear OA(4119, 159, F4, 55) (dual of [159, 40, 56]-code) | [i] | ||
36 | Linear OA(4118, 156, F4, 55) (dual of [156, 38, 56]-code) | [i] | ||
37 | Linear OA(4117, 153, F4, 55) (dual of [153, 36, 56]-code) | [i] | ||
38 | Linear OA(4172, 212, F4, 83) (dual of [212, 40, 84]-code) | [i] | ||
39 | Linear OA(4170, 208, F4, 83) (dual of [208, 38, 84]-code) | [i] | ||
40 | Linear OA(4255, 315, F4, 111) (dual of [315, 60, 112]-code) | [i] | ||
41 | Linear OA(4252, 310, F4, 111) (dual of [310, 58, 112]-code) | [i] | ||
42 | Linear OA(4249, 305, F4, 111) (dual of [305, 56, 112]-code) | [i] | ||
43 | Linear OA(4246, 300, F4, 111) (dual of [300, 54, 112]-code) | [i] | ||
44 | Linear OA(4243, 295, F4, 111) (dual of [295, 52, 112]-code) | [i] | ||
45 | Linear OA(4240, 290, F4, 111) (dual of [290, 50, 112]-code) | [i] | ||
46 | Linear OA(4237, 285, F4, 111) (dual of [285, 48, 112]-code) | [i] | ||
47 | Linear OA(4234, 280, F4, 111) (dual of [280, 46, 112]-code) | [i] | ||
48 | Linear OOA(2260, 192, F2, 2, 83) (dual of [(192, 2), 124, 84]-NRT-code) | [i] | Concatenation of Two NRT-Codes | |
49 | Linear OOA(2258, 189, F2, 2, 83) (dual of [(189, 2), 120, 84]-NRT-code) | [i] | ||
50 | Linear OOA(2256, 186, F2, 2, 83) (dual of [(186, 2), 116, 84]-NRT-code) | [i] | ||
51 | Linear OOA(2254, 183, F2, 2, 83) (dual of [(183, 2), 112, 84]-NRT-code) | [i] | ||
52 | Linear OOA(2252, 180, F2, 2, 83) (dual of [(180, 2), 108, 84]-NRT-code) | [i] | ||
53 | Linear OOA(2250, 177, F2, 2, 83) (dual of [(177, 2), 104, 84]-NRT-code) | [i] | ||
54 | Linear OOA(2248, 174, F2, 2, 83) (dual of [(174, 2), 100, 84]-NRT-code) | [i] | ||
55 | Linear OOA(2246, 171, F2, 2, 83) (dual of [(171, 2), 96, 84]-NRT-code) | [i] | ||
56 | Linear OOA(2244, 168, F2, 2, 83) (dual of [(168, 2), 92, 84]-NRT-code) | [i] | ||
57 | Linear OOA(2242, 165, F2, 2, 83) (dual of [(165, 2), 88, 84]-NRT-code) | [i] | ||
58 | Linear OOA(2240, 162, F2, 2, 83) (dual of [(162, 2), 84, 84]-NRT-code) | [i] | ||
59 | Linear OOA(2238, 159, F2, 2, 83) (dual of [(159, 2), 80, 84]-NRT-code) | [i] | ||
60 | Linear OOA(2236, 156, F2, 2, 83) (dual of [(156, 2), 76, 84]-NRT-code) | [i] | ||
61 | Linear OOA(2234, 153, F2, 2, 83) (dual of [(153, 2), 72, 84]-NRT-code) | [i] | ||
62 | Linear OOA(2260, 128, F2, 3, 83) (dual of [(128, 3), 124, 84]-NRT-code) | [i] | ||
63 | Linear OOA(2258, 126, F2, 3, 83) (dual of [(126, 3), 120, 84]-NRT-code) | [i] | ||
64 | Linear OOA(2256, 124, F2, 3, 83) (dual of [(124, 3), 116, 84]-NRT-code) | [i] | ||
65 | Linear OOA(2254, 122, F2, 3, 83) (dual of [(122, 3), 112, 84]-NRT-code) | [i] | ||
66 | Linear OOA(2252, 120, F2, 3, 83) (dual of [(120, 3), 108, 84]-NRT-code) | [i] | ||
67 | Linear OA(1636, 67, F16, 29) (dual of [67, 31, 30]-code) | [i] | ✔ | Construction X with Algebraic-Geometric Codes |
68 | Linear OA(1634, 67, F16, 27) (dual of [67, 33, 28]-code) | [i] | ✔ | |
69 | Linear OA(1638, 69, F16, 30) (dual of [69, 31, 31]-code) | [i] | ✔ | |
70 | Linear OA(1635, 69, F16, 27) (dual of [69, 34, 28]-code) | [i] | ✔ | |
71 | Linear OA(1640, 71, F16, 31) (dual of [71, 31, 32]-code) | [i] | ✔ | |
72 | Linear OA(1636, 71, F16, 27) (dual of [71, 35, 28]-code) | [i] | ✔ | |
73 | Linear OA(1642, 73, F16, 32) (dual of [73, 31, 33]-code) | [i] | ✔ | |
74 | Linear OA(1637, 73, F16, 27) (dual of [73, 36, 28]-code) | [i] | ✔ | |
75 | Linear OA(1644, 75, F16, 33) (dual of [75, 31, 34]-code) | [i] | ✔ | |
76 | Linear OA(1638, 75, F16, 27) (dual of [75, 37, 28]-code) | [i] | ✔ | |
77 | Linear OA(1646, 77, F16, 34) (dual of [77, 31, 35]-code) | [i] | ✔ | |
78 | Linear OA(1639, 77, F16, 27) (dual of [77, 38, 28]-code) | [i] | ✔ | |
79 | Linear OA(1648, 79, F16, 35) (dual of [79, 31, 36]-code) | [i] | ✔ | |
80 | Linear OA(1640, 79, F16, 27) (dual of [79, 39, 28]-code) | [i] | ✔ | |
81 | Linear OA(1650, 81, F16, 36) (dual of [81, 31, 37]-code) | [i] | ✔ | |
82 | Linear OA(1641, 81, F16, 27) (dual of [81, 40, 28]-code) | [i] | ✔ | |
83 | Linear OA(1653, 84, F16, 37) (dual of [84, 31, 38]-code) | [i] | ✔ | |
84 | Linear OA(1655, 86, F16, 38) (dual of [86, 31, 39]-code) | [i] | ✔ | |
85 | Linear OA(1644, 86, F16, 27) (dual of [86, 42, 28]-code) | [i] | ✔ | |
86 | Linear OA(1657, 88, F16, 39) (dual of [88, 31, 40]-code) | [i] | ✔ | |
87 | Linear OA(1645, 88, F16, 27) (dual of [88, 43, 28]-code) | [i] | ✔ | |
88 | Linear OA(1660, 91, F16, 40) (dual of [91, 31, 41]-code) | [i] | ✔ | |
89 | Linear OA(1647, 91, F16, 27) (dual of [91, 44, 28]-code) | [i] | ✔ | |
90 | Linear OA(1662, 93, F16, 41) (dual of [93, 31, 42]-code) | [i] | ✔ | |
91 | Linear OA(1648, 93, F16, 27) (dual of [93, 45, 28]-code) | [i] | ✔ | |
92 | Linear OA(1664, 95, F16, 42) (dual of [95, 31, 43]-code) | [i] | ✔ | |
93 | Linear OA(1649, 95, F16, 27) (dual of [95, 46, 28]-code) | [i] | ✔ | |
94 | Linear OA(1666, 97, F16, 43) (dual of [97, 31, 44]-code) | [i] | ✔ | |
95 | Linear OA(1669, 100, F16, 44) (dual of [100, 31, 45]-code) | [i] | ✔ | |
96 | Linear OA(1671, 102, F16, 45) (dual of [102, 31, 46]-code) | [i] | ✔ | |
97 | Linear OA(1674, 105, F16, 46) (dual of [105, 31, 47]-code) | [i] | ✔ | |
98 | Linear OA(1676, 107, F16, 47) (dual of [107, 31, 48]-code) | [i] | ✔ | |
99 | Linear OA(1678, 109, F16, 48) (dual of [109, 31, 49]-code) | [i] | ✔ | |
100 | Linear OA(1696, 119, F16, 63) (dual of [119, 23, 64]-code) | [i] | ||
101 | Linear OA(1681, 112, F16, 49) (dual of [112, 31, 50]-code) | [i] | ✔ | |
102 | Linear OA(1684, 115, F16, 50) (dual of [115, 31, 51]-code) | [i] | ✔ | |
103 | Linear OA(1686, 117, F16, 51) (dual of [117, 31, 52]-code) | [i] | ✔ | |
104 | Linear OA(1695, 125, F16, 56) (dual of [125, 30, 57]-code) | [i] | ||
105 | Linear OA(1695, 122, F16, 59) (dual of [122, 27, 60]-code) | [i] | ||
106 | Linear OA(1694, 122, F16, 58) (dual of [122, 28, 59]-code) | [i] | ||
107 | Linear OA(1689, 120, F16, 53) (dual of [120, 31, 54]-code) | [i] | ✔ | |
108 | Linear OA(1691, 122, F16, 54) (dual of [122, 31, 55]-code) | [i] | ✔ | |
109 | Linear OA(1693, 124, F16, 55) (dual of [124, 31, 56]-code) | [i] | ||
110 | Linear OA(1693, 124, F16, 55) (dual of [124, 31, 56]-code) | [i] | ✔ | |
111 | Linear OA(1697, 128, F16, 58) (dual of [128, 31, 59]-code) | [i] | ✔ | |
112 | Linear OOA(1633, 32, F16, 2, 27) (dual of [(32, 2), 31, 28]-NRT-code) | [i] | OOA Folding |