Information on Result #644768
Linear OA(1631, 64, F16, 25) (dual of [64, 33, 26]-code), using algebraic-geometric code AG(F,38P) based on function field F/F16 with g(F) = 6 and N(F) ≥ 65, using
- the Hermitian function field over F16 [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(1686, 110, F16, 51) (dual of [110, 24, 52]-code) | [i] | Repeating Each Code Word | |
2 | Linear OA(1685, 108, F16, 51) (dual of [108, 23, 52]-code) | [i] | ||
3 | Linear OA(1684, 106, F16, 51) (dual of [106, 22, 52]-code) | [i] | ||
4 | Linear OA(1683, 104, F16, 51) (dual of [104, 21, 52]-code) | [i] | ||
5 | Linear OA(1682, 102, F16, 51) (dual of [102, 20, 52]-code) | [i] | ||
6 | Linear OA(2188, 320, F2, 51) (dual of [320, 132, 52]-code) | [i] | Concatenation of Two Codes | |
7 | Linear OA(2187, 315, F2, 51) (dual of [315, 128, 52]-code) | [i] | ||
8 | Linear OA(2186, 310, F2, 51) (dual of [310, 124, 52]-code) | [i] | ||
9 | Linear OA(2185, 305, F2, 51) (dual of [305, 120, 52]-code) | [i] | ||
10 | Linear OA(2184, 300, F2, 51) (dual of [300, 116, 52]-code) | [i] | ||
11 | Linear OA(2183, 295, F2, 51) (dual of [295, 112, 52]-code) | [i] | ||
12 | Linear OA(2182, 290, F2, 51) (dual of [290, 108, 52]-code) | [i] | ||
13 | Linear OA(2181, 285, F2, 51) (dual of [285, 104, 52]-code) | [i] | ||
14 | Linear OA(2180, 280, F2, 51) (dual of [280, 100, 52]-code) | [i] | ||
15 | Linear OA(2179, 275, F2, 51) (dual of [275, 96, 52]-code) | [i] | ||
16 | Linear OA(2178, 270, F2, 51) (dual of [270, 92, 52]-code) | [i] | ||
17 | Linear OA(4126, 192, F4, 51) (dual of [192, 66, 52]-code) | [i] | ||
18 | Linear OA(4125, 189, F4, 51) (dual of [189, 64, 52]-code) | [i] | ||
19 | Linear OA(4124, 186, F4, 51) (dual of [186, 62, 52]-code) | [i] | ||
20 | Linear OA(4123, 183, F4, 51) (dual of [183, 60, 52]-code) | [i] | ||
21 | Linear OA(4122, 180, F4, 51) (dual of [180, 58, 52]-code) | [i] | ||
22 | Linear OA(4121, 177, F4, 51) (dual of [177, 56, 52]-code) | [i] | ||
23 | Linear OA(4120, 174, F4, 51) (dual of [174, 54, 52]-code) | [i] | ||
24 | Linear OA(4119, 171, F4, 51) (dual of [171, 52, 52]-code) | [i] | ||
25 | Linear OA(4118, 168, F4, 51) (dual of [168, 50, 52]-code) | [i] | ||
26 | Linear OA(4117, 165, F4, 51) (dual of [165, 48, 52]-code) | [i] | ||
27 | Linear OA(4116, 162, F4, 51) (dual of [162, 46, 52]-code) | [i] | ||
28 | Linear OA(4115, 159, F4, 51) (dual of [159, 44, 52]-code) | [i] | ||
29 | Linear OA(4114, 156, F4, 51) (dual of [156, 42, 52]-code) | [i] | ||
30 | Linear OA(4113, 153, F4, 51) (dual of [153, 40, 52]-code) | [i] | ||
31 | Linear OA(4248, 310, F4, 103) (dual of [310, 62, 104]-code) | [i] | ||
32 | Linear OA(4245, 305, F4, 103) (dual of [305, 60, 104]-code) | [i] | ||
33 | Linear OA(4242, 300, F4, 103) (dual of [300, 58, 104]-code) | [i] | ||
34 | Linear OA(4239, 295, F4, 103) (dual of [295, 56, 104]-code) | [i] | ||
35 | Linear OOA(2252, 192, F2, 2, 77) (dual of [(192, 2), 132, 78]-NRT-code) | [i] | Concatenation of Two NRT-Codes | |
36 | Linear OOA(2250, 189, F2, 2, 77) (dual of [(189, 2), 128, 78]-NRT-code) | [i] | ||
37 | Linear OOA(2248, 186, F2, 2, 77) (dual of [(186, 2), 124, 78]-NRT-code) | [i] | ||
38 | Linear OOA(2246, 183, F2, 2, 77) (dual of [(183, 2), 120, 78]-NRT-code) | [i] | ||
39 | Linear OOA(2244, 180, F2, 2, 77) (dual of [(180, 2), 116, 78]-NRT-code) | [i] | ||
40 | Linear OOA(2242, 177, F2, 2, 77) (dual of [(177, 2), 112, 78]-NRT-code) | [i] | ||
41 | Linear OOA(2240, 174, F2, 2, 77) (dual of [(174, 2), 108, 78]-NRT-code) | [i] | ||
42 | Linear OOA(2238, 171, F2, 2, 77) (dual of [(171, 2), 104, 78]-NRT-code) | [i] | ||
43 | Linear OOA(2236, 168, F2, 2, 77) (dual of [(168, 2), 100, 78]-NRT-code) | [i] | ||
44 | Linear OOA(2234, 165, F2, 2, 77) (dual of [(165, 2), 96, 78]-NRT-code) | [i] | ||
45 | Linear OOA(2232, 162, F2, 2, 77) (dual of [(162, 2), 92, 78]-NRT-code) | [i] | ||
46 | Linear OOA(2230, 159, F2, 2, 77) (dual of [(159, 2), 88, 78]-NRT-code) | [i] | ||
47 | Linear OOA(2228, 156, F2, 2, 77) (dual of [(156, 2), 84, 78]-NRT-code) | [i] | ||
48 | Linear OOA(2226, 153, F2, 2, 77) (dual of [(153, 2), 80, 78]-NRT-code) | [i] | ||
49 | Linear OOA(2250, 126, F2, 3, 77) (dual of [(126, 3), 128, 78]-NRT-code) | [i] | ||
50 | Linear OOA(2248, 124, F2, 3, 77) (dual of [(124, 3), 124, 78]-NRT-code) | [i] | ||
51 | Linear OOA(2246, 122, F2, 3, 77) (dual of [(122, 3), 120, 78]-NRT-code) | [i] | ||
52 | Linear OA(1634, 67, F16, 27) (dual of [67, 33, 28]-code) | [i] | ✔ | Construction X with Algebraic-Geometric Codes |
53 | Linear OA(1632, 67, F16, 25) (dual of [67, 35, 26]-code) | [i] | ✔ | |
54 | Linear OA(1636, 69, F16, 28) (dual of [69, 33, 29]-code) | [i] | ✔ | |
55 | Linear OA(1633, 69, F16, 25) (dual of [69, 36, 26]-code) | [i] | ✔ | |
56 | Linear OA(1638, 71, F16, 29) (dual of [71, 33, 30]-code) | [i] | ✔ | |
57 | Linear OA(1634, 71, F16, 25) (dual of [71, 37, 26]-code) | [i] | ✔ | |
58 | Linear OA(1640, 73, F16, 30) (dual of [73, 33, 31]-code) | [i] | ✔ | |
59 | Linear OA(1635, 73, F16, 25) (dual of [73, 38, 26]-code) | [i] | ✔ | |
60 | Linear OA(1642, 75, F16, 31) (dual of [75, 33, 32]-code) | [i] | ✔ | |
61 | Linear OA(1636, 75, F16, 25) (dual of [75, 39, 26]-code) | [i] | ✔ | |
62 | Linear OA(1644, 77, F16, 32) (dual of [77, 33, 33]-code) | [i] | ✔ | |
63 | Linear OA(1637, 77, F16, 25) (dual of [77, 40, 26]-code) | [i] | ✔ | |
64 | Linear OA(1646, 79, F16, 33) (dual of [79, 33, 34]-code) | [i] | ✔ | |
65 | Linear OA(1638, 79, F16, 25) (dual of [79, 41, 26]-code) | [i] | ✔ | |
66 | Linear OA(1648, 81, F16, 34) (dual of [81, 33, 35]-code) | [i] | ✔ | |
67 | Linear OA(1639, 81, F16, 25) (dual of [81, 42, 26]-code) | [i] | ✔ | |
68 | Linear OA(1651, 84, F16, 35) (dual of [84, 33, 36]-code) | [i] | ✔ | |
69 | Linear OA(1653, 86, F16, 36) (dual of [86, 33, 37]-code) | [i] | ✔ | |
70 | Linear OA(1655, 88, F16, 37) (dual of [88, 33, 38]-code) | [i] | ✔ | |
71 | Linear OA(1643, 88, F16, 25) (dual of [88, 45, 26]-code) | [i] | ✔ | |
72 | Linear OA(1658, 91, F16, 38) (dual of [91, 33, 39]-code) | [i] | ✔ | |
73 | Linear OA(1645, 91, F16, 25) (dual of [91, 46, 26]-code) | [i] | ✔ | |
74 | Linear OA(1660, 93, F16, 39) (dual of [93, 33, 40]-code) | [i] | ✔ | |
75 | Linear OA(1662, 95, F16, 40) (dual of [95, 33, 41]-code) | [i] | ✔ | |
76 | Linear OA(1664, 97, F16, 41) (dual of [97, 33, 42]-code) | [i] | ✔ | |
77 | Linear OA(1667, 100, F16, 42) (dual of [100, 33, 43]-code) | [i] | ✔ | |
78 | Linear OA(1669, 102, F16, 43) (dual of [102, 33, 44]-code) | [i] | ✔ | |
79 | Linear OA(1672, 105, F16, 44) (dual of [105, 33, 45]-code) | [i] | ✔ | |
80 | Linear OA(1694, 115, F16, 63) (dual of [115, 21, 64]-code) | [i] | ||
81 | Linear OA(1674, 107, F16, 45) (dual of [107, 33, 46]-code) | [i] | ✔ | |
82 | Linear OA(1676, 109, F16, 46) (dual of [109, 33, 47]-code) | [i] | ✔ | |
83 | Linear OA(1679, 112, F16, 47) (dual of [112, 33, 48]-code) | [i] | ✔ | |
84 | Linear OA(1682, 115, F16, 48) (dual of [115, 33, 49]-code) | [i] | ✔ | |
85 | Linear OA(1684, 117, F16, 49) (dual of [117, 33, 50]-code) | [i] | ✔ | |
86 | Linear OA(1693, 121, F16, 56) (dual of [121, 28, 57]-code) | [i] | ||
87 | Linear OA(1692, 121, F16, 55) (dual of [121, 29, 56]-code) | [i] | ||
88 | Linear OA(1691, 121, F16, 54) (dual of [121, 30, 55]-code) | [i] | ||
89 | Linear OA(1693, 118, F16, 59) (dual of [118, 25, 60]-code) | [i] | ||
90 | Linear OA(1692, 118, F16, 58) (dual of [118, 26, 59]-code) | [i] | ||
91 | Linear OA(1691, 120, F16, 55) (dual of [120, 29, 56]-code) | [i] | ||
92 | Linear OA(1690, 120, F16, 54) (dual of [120, 30, 55]-code) | [i] | ||
93 | Linear OA(1689, 120, F16, 53) (dual of [120, 31, 54]-code) | [i] | ||
94 | Linear OOA(1631, 32, F16, 2, 25) (dual of [(32, 2), 33, 26]-NRT-code) | [i] | OOA Folding |