Information on Result #644772
Linear OA(1629, 64, F16, 23) (dual of [64, 35, 24]-code), using algebraic-geometric code AG(F,40P) based on function field F/F16 with g(F) = 6 and N(F) ≥ 65, using
- the Hermitian function field over F16 [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(1682, 106, F16, 47) (dual of [106, 24, 48]-code) | [i] | Repeating Each Code Word | |
2 | Linear OA(1681, 104, F16, 47) (dual of [104, 23, 48]-code) | [i] | ||
3 | Linear OA(1680, 102, F16, 47) (dual of [102, 22, 48]-code) | [i] | ||
4 | Linear OA(1681, 116, F16, 47) (dual of [116, 35, 48]-code) | [i] | (u, u+v)-Construction | |
5 | Linear OA(2180, 320, F2, 47) (dual of [320, 140, 48]-code) | [i] | Concatenation of Two Codes | |
6 | Linear OA(2179, 315, F2, 47) (dual of [315, 136, 48]-code) | [i] | ||
7 | Linear OA(2178, 310, F2, 47) (dual of [310, 132, 48]-code) | [i] | ||
8 | Linear OA(2177, 305, F2, 47) (dual of [305, 128, 48]-code) | [i] | ||
9 | Linear OA(2176, 300, F2, 47) (dual of [300, 124, 48]-code) | [i] | ||
10 | Linear OA(2175, 295, F2, 47) (dual of [295, 120, 48]-code) | [i] | ||
11 | Linear OA(2174, 290, F2, 47) (dual of [290, 116, 48]-code) | [i] | ||
12 | Linear OA(2173, 285, F2, 47) (dual of [285, 112, 48]-code) | [i] | ||
13 | Linear OA(2172, 280, F2, 47) (dual of [280, 108, 48]-code) | [i] | ||
14 | Linear OA(2171, 275, F2, 47) (dual of [275, 104, 48]-code) | [i] | ||
15 | Linear OA(2170, 270, F2, 47) (dual of [270, 100, 48]-code) | [i] | ||
16 | Linear OA(4122, 192, F4, 47) (dual of [192, 70, 48]-code) | [i] | ||
17 | Linear OA(4121, 189, F4, 47) (dual of [189, 68, 48]-code) | [i] | ||
18 | Linear OA(4120, 186, F4, 47) (dual of [186, 66, 48]-code) | [i] | ||
19 | Linear OA(4119, 183, F4, 47) (dual of [183, 64, 48]-code) | [i] | ||
20 | Linear OA(4118, 180, F4, 47) (dual of [180, 62, 48]-code) | [i] | ||
21 | Linear OA(4117, 177, F4, 47) (dual of [177, 60, 48]-code) | [i] | ||
22 | Linear OA(4116, 174, F4, 47) (dual of [174, 58, 48]-code) | [i] | ||
23 | Linear OA(4115, 171, F4, 47) (dual of [171, 56, 48]-code) | [i] | ||
24 | Linear OA(4114, 168, F4, 47) (dual of [168, 54, 48]-code) | [i] | ||
25 | Linear OA(4113, 165, F4, 47) (dual of [165, 52, 48]-code) | [i] | ||
26 | Linear OA(4112, 162, F4, 47) (dual of [162, 50, 48]-code) | [i] | ||
27 | Linear OA(4111, 159, F4, 47) (dual of [159, 48, 48]-code) | [i] | ||
28 | Linear OA(4110, 156, F4, 47) (dual of [156, 46, 48]-code) | [i] | ||
29 | Linear OA(4109, 153, F4, 47) (dual of [153, 44, 48]-code) | [i] | ||
30 | Linear OA(4238, 300, F4, 95) (dual of [300, 62, 96]-code) | [i] | ||
31 | Linear OOA(2244, 192, F2, 2, 71) (dual of [(192, 2), 140, 72]-NRT-code) | [i] | Concatenation of Two NRT-Codes | |
32 | Linear OOA(2242, 189, F2, 2, 71) (dual of [(189, 2), 136, 72]-NRT-code) | [i] | ||
33 | Linear OOA(2240, 186, F2, 2, 71) (dual of [(186, 2), 132, 72]-NRT-code) | [i] | ||
34 | Linear OOA(2238, 183, F2, 2, 71) (dual of [(183, 2), 128, 72]-NRT-code) | [i] | ||
35 | Linear OOA(2236, 180, F2, 2, 71) (dual of [(180, 2), 124, 72]-NRT-code) | [i] | ||
36 | Linear OOA(2234, 177, F2, 2, 71) (dual of [(177, 2), 120, 72]-NRT-code) | [i] | ||
37 | Linear OOA(2232, 174, F2, 2, 71) (dual of [(174, 2), 116, 72]-NRT-code) | [i] | ||
38 | Linear OOA(2230, 171, F2, 2, 71) (dual of [(171, 2), 112, 72]-NRT-code) | [i] | ||
39 | Linear OOA(2228, 168, F2, 2, 71) (dual of [(168, 2), 108, 72]-NRT-code) | [i] | ||
40 | Linear OOA(2226, 165, F2, 2, 71) (dual of [(165, 2), 104, 72]-NRT-code) | [i] | ||
41 | Linear OOA(2224, 162, F2, 2, 71) (dual of [(162, 2), 100, 72]-NRT-code) | [i] | ||
42 | Linear OOA(2222, 159, F2, 2, 71) (dual of [(159, 2), 96, 72]-NRT-code) | [i] | ||
43 | Linear OOA(2220, 156, F2, 2, 71) (dual of [(156, 2), 92, 72]-NRT-code) | [i] | ||
44 | Linear OOA(2218, 153, F2, 2, 71) (dual of [(153, 2), 88, 72]-NRT-code) | [i] | ||
45 | Linear OA(1632, 67, F16, 25) (dual of [67, 35, 26]-code) | [i] | ✔ | Construction X with Algebraic-Geometric Codes |
46 | Linear OA(1630, 67, F16, 23) (dual of [67, 37, 24]-code) | [i] | ✔ | |
47 | Linear OA(1634, 69, F16, 26) (dual of [69, 35, 27]-code) | [i] | ✔ | |
48 | Linear OA(1631, 69, F16, 23) (dual of [69, 38, 24]-code) | [i] | ✔ | |
49 | Linear OA(1636, 71, F16, 27) (dual of [71, 35, 28]-code) | [i] | ✔ | |
50 | Linear OA(1632, 71, F16, 23) (dual of [71, 39, 24]-code) | [i] | ✔ | |
51 | Linear OA(1638, 73, F16, 28) (dual of [73, 35, 29]-code) | [i] | ✔ | |
52 | Linear OA(1633, 73, F16, 23) (dual of [73, 40, 24]-code) | [i] | ✔ | |
53 | Linear OA(1640, 75, F16, 29) (dual of [75, 35, 30]-code) | [i] | ✔ | |
54 | Linear OA(1634, 75, F16, 23) (dual of [75, 41, 24]-code) | [i] | ✔ | |
55 | Linear OA(1642, 77, F16, 30) (dual of [77, 35, 31]-code) | [i] | ✔ | |
56 | Linear OA(1635, 77, F16, 23) (dual of [77, 42, 24]-code) | [i] | ✔ | |
57 | Linear OA(1644, 79, F16, 31) (dual of [79, 35, 32]-code) | [i] | ✔ | |
58 | Linear OA(1636, 79, F16, 23) (dual of [79, 43, 24]-code) | [i] | ✔ | |
59 | Linear OA(1646, 81, F16, 32) (dual of [81, 35, 33]-code) | [i] | ✔ | |
60 | Linear OA(1649, 84, F16, 33) (dual of [84, 35, 34]-code) | [i] | ✔ | |
61 | Linear OA(1651, 86, F16, 34) (dual of [86, 35, 35]-code) | [i] | ✔ | |
62 | Linear OA(1653, 88, F16, 35) (dual of [88, 35, 36]-code) | [i] | ✔ | |
63 | Linear OA(1656, 91, F16, 36) (dual of [91, 35, 37]-code) | [i] | ✔ | |
64 | Linear OA(1658, 93, F16, 37) (dual of [93, 35, 38]-code) | [i] | ✔ | |
65 | Linear OA(1660, 95, F16, 38) (dual of [95, 35, 39]-code) | [i] | ✔ | |
66 | Linear OA(1662, 97, F16, 39) (dual of [97, 35, 40]-code) | [i] | ✔ | |
67 | Linear OA(1665, 100, F16, 40) (dual of [100, 35, 41]-code) | [i] | ✔ | |
68 | Linear OA(1667, 102, F16, 41) (dual of [102, 35, 42]-code) | [i] | ✔ | |
69 | Linear OA(1670, 105, F16, 42) (dual of [105, 35, 43]-code) | [i] | ✔ | |
70 | Linear OA(1672, 107, F16, 43) (dual of [107, 35, 44]-code) | [i] | ✔ | |
71 | Linear OA(1674, 109, F16, 44) (dual of [109, 35, 45]-code) | [i] | ✔ | |
72 | Linear OA(1677, 112, F16, 45) (dual of [112, 35, 46]-code) | [i] | ✔ | |
73 | Linear OA(1680, 115, F16, 46) (dual of [115, 35, 47]-code) | [i] | ✔ | |
74 | Linear OA(1691, 117, F16, 56) (dual of [117, 26, 57]-code) | [i] | ||
75 | Linear OA(1690, 117, F16, 55) (dual of [117, 27, 56]-code) | [i] | ||
76 | Linear OA(1689, 117, F16, 54) (dual of [117, 28, 55]-code) | [i] | ||
77 | Linear OA(1688, 117, F16, 53) (dual of [117, 29, 54]-code) | [i] | ||
78 | Linear OA(1687, 117, F16, 52) (dual of [117, 30, 53]-code) | [i] | ||
79 | Linear OA(1686, 117, F16, 51) (dual of [117, 31, 52]-code) | [i] | ||
80 | Linear OA(1685, 117, F16, 50) (dual of [117, 32, 51]-code) | [i] | ||
81 | Linear OA(1684, 117, F16, 49) (dual of [117, 33, 50]-code) | [i] | ||
82 | Linear OA(1683, 117, F16, 48) (dual of [117, 34, 49]-code) | [i] | ||
83 | Linear OA(1682, 117, F16, 47) (dual of [117, 35, 48]-code) | [i] | ✔ | |
84 | Linear OA(1682, 117, F16, 47) (dual of [117, 35, 48]-code) | [i] | ||
85 | Linear OA(1681, 117, F16, 46) (dual of [117, 36, 47]-code) | [i] | ||
86 | Linear OA(1680, 117, F16, 45) (dual of [117, 37, 46]-code) | [i] | ||
87 | Linear OA(1689, 116, F16, 55) (dual of [116, 27, 56]-code) | [i] | ||
88 | Linear OA(1688, 116, F16, 54) (dual of [116, 28, 55]-code) | [i] | ||
89 | Linear OA(1687, 116, F16, 53) (dual of [116, 29, 54]-code) | [i] | ||
90 | Linear OOA(1629, 32, F16, 2, 23) (dual of [(32, 2), 35, 24]-NRT-code) | [i] | OOA Folding |