Information on Result #644778
Linear OA(1626, 64, F16, 20) (dual of [64, 38, 21]-code), using algebraic-geometric code AG(F,43P) based on function field F/F16 with g(F) = 6 and N(F) ≥ 65, using
- the Hermitian function field over F16 [i]
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2168, 320, F2, 41) (dual of [320, 152, 42]-code) | [i] | Concatenation of Two Codes | |
2 | Linear OA(2167, 315, F2, 41) (dual of [315, 148, 42]-code) | [i] | ||
3 | Linear OA(2166, 310, F2, 41) (dual of [310, 144, 42]-code) | [i] | ||
4 | Linear OA(2165, 305, F2, 41) (dual of [305, 140, 42]-code) | [i] | ||
5 | Linear OA(2164, 300, F2, 41) (dual of [300, 136, 42]-code) | [i] | ||
6 | Linear OA(2163, 295, F2, 41) (dual of [295, 132, 42]-code) | [i] | ||
7 | Linear OA(2162, 290, F2, 41) (dual of [290, 128, 42]-code) | [i] | ||
8 | Linear OA(2161, 285, F2, 41) (dual of [285, 124, 42]-code) | [i] | ||
9 | Linear OA(2160, 280, F2, 41) (dual of [280, 120, 42]-code) | [i] | ||
10 | Linear OA(2159, 275, F2, 41) (dual of [275, 116, 42]-code) | [i] | ||
11 | Linear OA(4112, 180, F4, 41) (dual of [180, 68, 42]-code) | [i] | ||
12 | Linear OA(4111, 177, F4, 41) (dual of [177, 66, 42]-code) | [i] | ||
13 | Linear OA(4110, 174, F4, 41) (dual of [174, 64, 42]-code) | [i] | ||
14 | Linear OA(4109, 171, F4, 41) (dual of [171, 62, 42]-code) | [i] | ||
15 | Linear OA(4108, 168, F4, 41) (dual of [168, 60, 42]-code) | [i] | ||
16 | Linear OA(4107, 165, F4, 41) (dual of [165, 58, 42]-code) | [i] | ||
17 | Linear OA(4106, 162, F4, 41) (dual of [162, 56, 42]-code) | [i] | ||
18 | Linear OA(4105, 159, F4, 41) (dual of [159, 54, 42]-code) | [i] | ||
19 | Linear OA(4104, 156, F4, 41) (dual of [156, 52, 42]-code) | [i] | ||
20 | Linear OA(4103, 153, F4, 41) (dual of [153, 50, 42]-code) | [i] | ||
21 | Linear OOA(2226, 183, F2, 2, 62) (dual of [(183, 2), 140, 63]-NRT-code) | [i] | Concatenation of Two NRT-Codes | |
22 | Linear OOA(2224, 180, F2, 2, 62) (dual of [(180, 2), 136, 63]-NRT-code) | [i] | ||
23 | Linear OOA(2222, 177, F2, 2, 62) (dual of [(177, 2), 132, 63]-NRT-code) | [i] | ||
24 | Linear OOA(2220, 174, F2, 2, 62) (dual of [(174, 2), 128, 63]-NRT-code) | [i] | ||
25 | Linear OOA(2218, 171, F2, 2, 62) (dual of [(171, 2), 124, 63]-NRT-code) | [i] | ||
26 | Linear OOA(2216, 168, F2, 2, 62) (dual of [(168, 2), 120, 63]-NRT-code) | [i] | ||
27 | Linear OOA(2214, 165, F2, 2, 62) (dual of [(165, 2), 116, 63]-NRT-code) | [i] | ||
28 | Linear OOA(2210, 159, F2, 2, 62) (dual of [(159, 2), 108, 63]-NRT-code) | [i] | ||
29 | Linear OOA(2208, 156, F2, 2, 62) (dual of [(156, 2), 104, 63]-NRT-code) | [i] | ||
30 | Linear OOA(2206, 153, F2, 2, 62) (dual of [(153, 2), 100, 63]-NRT-code) | [i] | ||
31 | Linear OA(1629, 67, F16, 22) (dual of [67, 38, 23]-code) | [i] | ✔ | Construction X with Algebraic-Geometric Codes |
32 | Linear OA(1627, 67, F16, 20) (dual of [67, 40, 21]-code) | [i] | ✔ | |
33 | Linear OA(1631, 69, F16, 23) (dual of [69, 38, 24]-code) | [i] | ✔ | |
34 | Linear OA(1628, 69, F16, 20) (dual of [69, 41, 21]-code) | [i] | ✔ | |
35 | Linear OA(1633, 71, F16, 24) (dual of [71, 38, 25]-code) | [i] | ✔ | |
36 | Linear OA(1629, 71, F16, 20) (dual of [71, 42, 21]-code) | [i] | ✔ | |
37 | Linear OA(1635, 73, F16, 25) (dual of [73, 38, 26]-code) | [i] | ✔ | |
38 | Linear OA(1630, 73, F16, 20) (dual of [73, 43, 21]-code) | [i] | ✔ | |
39 | Linear OA(1637, 75, F16, 26) (dual of [75, 38, 27]-code) | [i] | ✔ | |
40 | Linear OA(1631, 75, F16, 20) (dual of [75, 44, 21]-code) | [i] | ✔ | |
41 | Linear OA(1639, 77, F16, 27) (dual of [77, 38, 28]-code) | [i] | ✔ | |
42 | Linear OA(1632, 77, F16, 20) (dual of [77, 45, 21]-code) | [i] | ✔ | |
43 | Linear OA(1641, 79, F16, 28) (dual of [79, 38, 29]-code) | [i] | ✔ | |
44 | Linear OA(1633, 79, F16, 20) (dual of [79, 46, 21]-code) | [i] | ✔ | |
45 | Linear OA(1643, 81, F16, 29) (dual of [81, 38, 30]-code) | [i] | ✔ | |
46 | Linear OA(1646, 84, F16, 30) (dual of [84, 38, 31]-code) | [i] | ✔ | |
47 | Linear OA(1648, 86, F16, 31) (dual of [86, 38, 32]-code) | [i] | ✔ | |
48 | Linear OA(1650, 88, F16, 32) (dual of [88, 38, 33]-code) | [i] | ✔ | |
49 | Linear OA(1653, 91, F16, 33) (dual of [91, 38, 34]-code) | [i] | ✔ | |
50 | Linear OA(1655, 93, F16, 34) (dual of [93, 38, 35]-code) | [i] | ✔ | |
51 | Linear OA(1657, 95, F16, 35) (dual of [95, 38, 36]-code) | [i] | ✔ | |
52 | Linear OA(1659, 97, F16, 36) (dual of [97, 38, 37]-code) | [i] | ✔ | |
53 | Linear OA(1662, 100, F16, 37) (dual of [100, 38, 38]-code) | [i] | ✔ | |
54 | Linear OA(1664, 102, F16, 38) (dual of [102, 38, 39]-code) | [i] | ✔ | |
55 | Linear OA(1667, 105, F16, 39) (dual of [105, 38, 40]-code) | [i] | ✔ | |
56 | Linear OA(1669, 107, F16, 40) (dual of [107, 38, 41]-code) | [i] | ✔ | |
57 | Linear OA(1671, 109, F16, 41) (dual of [109, 38, 42]-code) | [i] | ✔ | |
58 | Linear OA(1674, 112, F16, 42) (dual of [112, 38, 43]-code) | [i] | ✔ | |
59 | Linear OOA(1626, 32, F16, 2, 20) (dual of [(32, 2), 38, 21]-NRT-code) | [i] | OOA Folding |