Information on Result #673627
Linear OA(249, 256, F2, 13) (dual of [256, 207, 14]-code), using an extension Ce(12) of the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(258, 265, F2, 15) (dual of [265, 207, 16]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
2 | Linear OA(250, 265, F2, 13) (dual of [265, 215, 14]-code) | [i] | ✔ | |
3 | Linear OA(280, 287, F2, 19) (dual of [287, 207, 20]-code) | [i] | ✔ | |
4 | Linear OA(290, 290, F2, 21) (dual of [290, 200, 22]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
5 | Linear OA(279, 281, F2, 19) (dual of [281, 202, 20]-code) | [i] | ✔ | |
6 | Linear OA(278, 279, F2, 19) (dual of [279, 201, 20]-code) | [i] | ✔ | |
7 | Linear OA(277, 277, F2, 19) (dual of [277, 200, 20]-code) | [i] | ✔ | |
8 | Linear OA(269, 270, F2, 17) (dual of [270, 201, 18]-code) | [i] | ✔ | |
9 | Linear OA(268, 268, F2, 17) (dual of [268, 200, 18]-code) | [i] | ✔ | |
10 | Linear OA(261, 270, F2, 15) (dual of [270, 209, 16]-code) | [i] | ✔ | |
11 | Linear OA(260, 268, F2, 15) (dual of [268, 208, 16]-code) | [i] | ✔ | |
12 | Linear OA(253, 270, F2, 13) (dual of [270, 217, 14]-code) | [i] | ✔ | |
13 | Linear OA(252, 268, F2, 13) (dual of [268, 216, 14]-code) | [i] | ✔ | |
14 | Linear OOA(249, 128, F2, 2, 13) (dual of [(128, 2), 207, 14]-NRT-code) | [i] | OOA Folding | |
15 | Linear OOA(249, 64, F2, 4, 13) (dual of [(64, 4), 207, 14]-NRT-code) | [i] |