Information on Result #674147

Linear OA(280, 97, F2, 33) (dual of [97, 17, 34]-code), using construction XX applied to C1 = C([0,28]), C2 = C([1,36]), C3 = C1 + C2 = C([1,28]), and C∩ = C1 ∩ C2 = C([0,36]) based on
  1. linear OA(269, 85, F2, 31) (dual of [85, 16, 32]-code), using the expurgated narrow-sense BCH-code C(I) with length 85 | 28−1, defining interval I = [0,28], and minimum distance d ≥ |{−2,−1,…,28}|+1 = 32 (BCH-bound) [i]
  2. linear OA(276, 85, F2, 36) (dual of [85, 9, 37]-code), using the narrow-sense BCH-code C(I) with length 85 | 28−1, defining interval I = [1,36], and designed minimum distance d ≥ |I|+1 = 37 [i]
  3. linear OA(277, 85, F2, 39) (dual of [85, 8, 40]-code), using the expurgated narrow-sense BCH-code C(I) with length 85 | 28−1, defining interval I = [0,36], and minimum distance d ≥ |{−2,−1,…,36}|+1 = 40 (BCH-bound) [i]
  4. linear OA(268, 85, F2, 28) (dual of [85, 17, 29]-code), using the narrow-sense BCH-code C(I) with length 85 | 28−1, defining interval I = [1,28], and designed minimum distance d ≥ |I|+1 = 29 [i]
  5. linear OA(22, 3, F2, 2) (dual of [3, 1, 3]-code or 3-arc in PG(1,2)), using
  6. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.