Information on Result #674583
Linear OA(3187, 531483, F3, 23) (dual of [531483, 531296, 24]-code), using construction X applied to Ce(22) ⊂ Ce(18) based on
- linear OA(3181, 531441, F3, 23) (dual of [531441, 531260, 24]-code), using an extension Ce(22) of the primitive narrow-sense BCH-code C(I) with length 531440 = 312−1, defining interval I = [1,22], and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(3145, 531441, F3, 19) (dual of [531441, 531296, 20]-code), using an extension Ce(18) of the primitive narrow-sense BCH-code C(I) with length 531440 = 312−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(36, 42, F3, 3) (dual of [42, 36, 4]-code or 42-cap in PG(5,3)), using
- discarding factors / shortening the dual code based on linear OA(36, 48, F3, 3) (dual of [48, 42, 4]-code or 48-cap in PG(5,3)), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3188, 531484, F3, 23) (dual of [531484, 531296, 24]-code) | [i] | Code Embedding in Larger Space | |
2 | Linear OA(3189, 531485, F3, 23) (dual of [531485, 531296, 24]-code) | [i] | ||
3 | Linear OA(3190, 531486, F3, 23) (dual of [531486, 531296, 24]-code) | [i] | ||
4 | Linear OA(3191, 531487, F3, 23) (dual of [531487, 531296, 24]-code) | [i] | ||
5 | Linear OOA(3187, 265741, F3, 2, 23) (dual of [(265741, 2), 531295, 24]-NRT-code) | [i] | OOA Folding | |
6 | Linear OOA(3187, 177161, F3, 3, 23) (dual of [(177161, 3), 531296, 24]-NRT-code) | [i] | ||
7 | Linear OOA(3187, 132870, F3, 4, 23) (dual of [(132870, 4), 531293, 24]-NRT-code) | [i] | ||
8 | Linear OOA(3187, 106296, F3, 5, 23) (dual of [(106296, 5), 531293, 24]-NRT-code) | [i] | ||
9 | Linear OOA(3187, 48316, F3, 23, 23) (dual of [(48316, 23), 1111081, 24]-NRT-code) | [i] | OOA Folding and Stacking with Additional Row |