Information on Result #677821

Linear OA(327, 35, F3, 17) (dual of [35, 8, 18]-code), using construction XX applied to C1 = C([0,25]), C2 = C([1,33]), C3 = C1 + C2 = C([1,25]), and C∩ = C1 ∩ C2 = C([0,33]) based on
  1. linear OA(319, 26, F3, 13) (dual of [26, 7, 14]-code), using contraction [i] based on linear OA(345, 52, F3, 27) (dual of [52, 7, 28]-code), using the expurgated narrow-sense BCH-code C(I) with length 52 | 36−1, defining interval I = [0,25], and minimum distance d ≥ |{−1,0,…,25}|+1 = 28 (BCH-bound) [i]
  2. linear OA(322, 26, F3, 16) (dual of [26, 4, 17]-code), using contraction [i] based on linear OA(348, 52, F3, 33) (dual of [52, 4, 34]-code), using the narrow-sense BCH-code C(I) with length 52 | 36−1, defining interval I = [1,33], and designed minimum distance d ≥ |I|+1 = 34 [i]
  3. linear OA(323, 26, F3, 17) (dual of [26, 3, 18]-code), using contraction [i] based on linear OA(349, 52, F3, 35) (dual of [52, 3, 36]-code), using the expurgated narrow-sense BCH-code C(I) with length 52 | 36−1, defining interval I = [0,33], and minimum distance d ≥ |{−1,0,…,33}|+1 = 36 (BCH-bound) [i]
  4. linear OA(318, 26, F3, 12) (dual of [26, 8, 13]-code), using contraction [i] based on linear OA(344, 52, F3, 25) (dual of [52, 8, 26]-code), using the narrow-sense BCH-code C(I) with length 52 | 36−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
  5. linear OA(30, 1, F3, 0) (dual of [1, 1, 1]-code), using
  6. linear OA(34, 8, F3, 3) (dual of [8, 4, 4]-code or 8-cap in PG(3,3)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.