Information on Result #677836

Linear OA(336, 44, F3, 23) (dual of [44, 8, 24]-code), using construction XX applied to C1 = C([0,19]), C2 = C([1,21]), C3 = C1 + C2 = C([1,19]), and C∩ = C1 ∩ C2 = C([0,21]) based on
  1. linear OA(333, 40, F3, 21) (dual of [40, 7, 22]-code), using the expurgated narrow-sense BCH-code C(I) with length 40 | 34−1, defining interval I = [0,19], and minimum distance d ≥ |{−1,0,…,19}|+1 = 22 (BCH-bound) [i]
  2. linear OA(333, 40, F3, 21) (dual of [40, 7, 22]-code), using the narrow-sense BCH-code C(I) with length 40 | 34−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
  3. linear OA(334, 40, F3, 23) (dual of [40, 6, 24]-code), using the expurgated narrow-sense BCH-code C(I) with length 40 | 34−1, defining interval I = [0,21], and minimum distance d ≥ |{−1,0,…,21}|+1 = 24 (BCH-bound) [i]
  4. linear OA(332, 40, F3, 19) (dual of [40, 8, 20]-code), using the narrow-sense BCH-code C(I) with length 40 | 34−1, defining interval I = [1,19], and designed minimum distance d ≥ |I|+1 = 20 [i]
  5. linear OA(31, 2, F3, 1) (dual of [2, 1, 2]-code), using
  6. linear OA(31, 2, F3, 1) (dual of [2, 1, 2]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(336, 22, F3, 2, 23) (dual of [(22, 2), 8, 24]-NRT-code) [i]OOA Folding