Information on Result #681902

Linear OA(4194, 201, F4, 137) (dual of [201, 7, 138]-code), using construction XX applied to C1 = C([0,128]), C2 = C([1,140]), C3 = C1 + C2 = C([1,128]), and C∩ = C1 ∩ C2 = C([0,140]) based on
  1. linear OA(4183, 189, F4, 131) (dual of [189, 6, 132]-code), using the expurgated narrow-sense BCH-code C(I) with length 189 | 49−1, defining interval I = [0,128], and minimum distance d ≥ |{−2,−1,…,128}|+1 = 132 (BCH-bound) [i]
  2. linear OA(4185, 189, F4, 140) (dual of [189, 4, 141]-code), using the narrow-sense BCH-code C(I) with length 189 | 49−1, defining interval I = [1,140], and designed minimum distance d ≥ |I|+1 = 141 [i]
  3. linear OA(4186, 189, F4, 143) (dual of [189, 3, 144]-code), using the expurgated narrow-sense BCH-code C(I) with length 189 | 49−1, defining interval I = [0,140], and minimum distance d ≥ |{−7,−2,3,…,−53}|+1 = 144 (BCH-bound) [i]
  4. linear OA(4182, 189, F4, 128) (dual of [189, 7, 129]-code), using the narrow-sense BCH-code C(I) with length 189 | 49−1, defining interval I = [1,128], and designed minimum distance d ≥ |I|+1 = 129 [i]
  5. linear OA(42, 3, F4, 2) (dual of [3, 1, 3]-code or 3-arc in PG(1,4)), using
  6. linear OA(46, 9, F4, 5) (dual of [9, 3, 6]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(4194, 201, F4, 136) (dual of [201, 7, 137]-code) [i]Strength Reduction