Information on Result #685927

Linear OA(761, 76, F7, 38) (dual of [76, 15, 39]-code), using construction XX applied to C1 = C([0,49]), C2 = C([1,79]), C3 = C1 + C2 = C([1,49]), and C∩ = C1 ∩ C2 = C([0,79]) based on
  1. linear OA(734, 48, F7, 25) (dual of [48, 14, 26]-code), using contraction [i] based on linear OA(782, 96, F7, 51) (dual of [96, 14, 52]-code), using the expurgated narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [0,49], and minimum distance d ≥ |{−1,0,…,49}|+1 = 52 (BCH-bound) [i]
  2. linear OA(744, 48, F7, 39) (dual of [48, 4, 40]-code), using contraction [i] based on linear OA(792, 96, F7, 79) (dual of [96, 4, 80]-code), using the narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [1,79], and designed minimum distance d ≥ |I|+1 = 80 [i]
  3. linear OA(745, 48, F7, 40) (dual of [48, 3, 41]-code), using contraction [i] based on linear OA(793, 96, F7, 81) (dual of [96, 3, 82]-code), using the expurgated narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [0,79], and minimum distance d ≥ |{−1,0,…,79}|+1 = 82 (BCH-bound) [i]
  4. linear OA(733, 48, F7, 24) (dual of [48, 15, 25]-code), using contraction [i] based on linear OA(781, 96, F7, 49) (dual of [96, 15, 50]-code), using the narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
  5. linear OA(70, 1, F7, 0) (dual of [1, 1, 1]-code), using
  6. linear OA(716, 27, F7, 12) (dual of [27, 11, 13]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(761, 38, F7, 2, 38) (dual of [(38, 2), 15, 39]-NRT-code) [i]OOA Folding