Information on Result #685932

Linear OA(753, 61, F7, 40) (dual of [61, 8, 41]-code), using construction XX applied to C1 = C([0,65]), C2 = C([1,79]), C3 = C1 + C2 = C([1,65]), and C∩ = C1 ∩ C2 = C([0,79]) based on
  1. linear OA(741, 48, F7, 33) (dual of [48, 7, 34]-code), using contraction [i] based on linear OA(789, 96, F7, 67) (dual of [96, 7, 68]-code), using the expurgated narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [0,65], and minimum distance d ≥ |{−1,0,…,65}|+1 = 68 (BCH-bound) [i]
  2. linear OA(744, 48, F7, 39) (dual of [48, 4, 40]-code), using contraction [i] based on linear OA(792, 96, F7, 79) (dual of [96, 4, 80]-code), using the narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [1,79], and designed minimum distance d ≥ |I|+1 = 80 [i]
  3. linear OA(745, 48, F7, 40) (dual of [48, 3, 41]-code), using contraction [i] based on linear OA(793, 96, F7, 81) (dual of [96, 3, 82]-code), using the expurgated narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [0,79], and minimum distance d ≥ |{−1,0,…,79}|+1 = 82 (BCH-bound) [i]
  4. linear OA(740, 48, F7, 32) (dual of [48, 8, 33]-code), using contraction [i] based on linear OA(788, 96, F7, 65) (dual of [96, 8, 66]-code), using the narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [1,65], and designed minimum distance d ≥ |I|+1 = 66 [i]
  5. linear OA(70, 1, F7, 0) (dual of [1, 1, 1]-code), using
  6. linear OA(78, 12, F7, 6) (dual of [12, 4, 7]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.