Information on Result #685935

Linear OA(756, 72, F7, 34) (dual of [72, 16, 35]-code), using construction XX applied to C1 = C([0,47]), C2 = C([1,67]), C3 = C1 + C2 = C([1,47]), and C∩ = C1 ∩ C2 = C([0,67]) based on
  1. linear OA(733, 48, F7, 24) (dual of [48, 15, 25]-code), using contraction [i] based on linear OA(781, 96, F7, 49) (dual of [96, 15, 50]-code), using the expurgated narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [0,47], and minimum distance d ≥ |{−1,0,…,47}|+1 = 50 (BCH-bound) [i]
  2. linear OA(742, 48, F7, 33) (dual of [48, 6, 34]-code), using contraction [i] based on linear OA(790, 96, F7, 67) (dual of [96, 6, 68]-code), using the narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [1,67], and designed minimum distance d ≥ |I|+1 = 68 [i]
  3. linear OA(743, 48, F7, 34) (dual of [48, 5, 35]-code), using contraction [i] based on linear OA(791, 96, F7, 69) (dual of [96, 5, 70]-code), using the expurgated narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [0,67], and minimum distance d ≥ |{−1,0,…,67}|+1 = 70 (BCH-bound) [i]
  4. linear OA(732, 48, F7, 23) (dual of [48, 16, 24]-code), using contraction [i] based on linear OA(780, 96, F7, 47) (dual of [96, 16, 48]-code), using the narrow-sense BCH-code C(I) with length 96 | 74−1, defining interval I = [1,47], and designed minimum distance d ≥ |I|+1 = 48 [i]
  5. linear OA(70, 1, F7, 0) (dual of [1, 1, 1]-code), using
  6. linear OA(713, 23, F7, 9) (dual of [23, 10, 10]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(756, 24, F7, 3, 34) (dual of [(24, 3), 16, 35]-NRT-code) [i]OOA Folding