Information on Result #695074

Linear OA(2776, 19686, F27, 26) (dual of [19686, 19610, 27]-code), using construction X applied to Ce(25) ⊂ Ce(24) based on
  1. linear OA(2776, 19683, F27, 26) (dual of [19683, 19607, 27]-code), using an extension Ce(25) of the primitive narrow-sense BCH-code C(I) with length 19682 = 273−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26 [i]
  2. linear OA(2773, 19683, F27, 25) (dual of [19683, 19610, 26]-code), using an extension Ce(24) of the primitive narrow-sense BCH-code C(I) with length 19682 = 273−1, defining interval I = [1,24], and designed minimum distance d ≥ |I|+1 = 25 [i]
  3. linear OA(270, 3, F27, 0) (dual of [3, 3, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1OA(9114, 19686, S9, 26) [i]Discarding Parts of the Base for OAs
2Linear OA(2793, 19750, F27, 26) (dual of [19750, 19657, 27]-code) [i](u, u+v)-Construction
3Linear OA(2794, 19754, F27, 26) (dual of [19754, 19660, 27]-code) [i]
4Linear OA(2795, 19762, F27, 26) (dual of [19762, 19667, 27]-code) [i]
5Linear OA(2796, 19768, F27, 26) (dual of [19768, 19672, 27]-code) [i]
6Linear OA(2797, 19770, F27, 26) (dual of [19770, 19673, 27]-code) [i]
7Linear OA(2798, 19792, F27, 26) (dual of [19792, 19694, 27]-code) [i]
8Linear OA(2799, 19795, F27, 26) (dual of [19795, 19696, 27]-code) [i]
9Linear OA(27100, 19872, F27, 26) (dual of [19872, 19772, 27]-code) [i]
10OA(2794, 19768, S27, 26) [i]
11OA(2795, 19786, S27, 26) [i]
12OA(2796, 19802, S27, 26) [i]
13OA(2799, 19836, S27, 26) [i]
14Linear OOA(2776, 9843, F27, 2, 26) (dual of [(9843, 2), 19610, 27]-NRT-code) [i]OOA Folding