Information on Result #698394
Linear OA(6478, 262168, F64, 25) (dual of [262168, 262090, 26]-code), using construction X applied to C([0,12]) ⊂ C([0,9]) based on
- linear OA(6473, 262145, F64, 25) (dual of [262145, 262072, 26]-code), using the expurgated narrow-sense BCH-code C(I) with length 262145 | 646−1, defining interval I = [0,12], and minimum distance d ≥ |{−12,−11,…,12}|+1 = 26 (BCH-bound) [i]
- linear OA(6455, 262145, F64, 19) (dual of [262145, 262090, 20]-code), using the expurgated narrow-sense BCH-code C(I) with length 262145 | 646−1, defining interval I = [0,9], and minimum distance d ≥ |{−9,−8,…,9}|+1 = 20 (BCH-bound) [i]
- linear OA(645, 23, F64, 5) (dual of [23, 18, 6]-code or 23-arc in PG(4,64)), using
- discarding factors / shortening the dual code based on linear OA(645, 64, F64, 5) (dual of [64, 59, 6]-code or 64-arc in PG(4,64)), using
- Reed–Solomon code RS(59,64) [i]
- discarding factors / shortening the dual code based on linear OA(645, 64, F64, 5) (dual of [64, 59, 6]-code or 64-arc in PG(4,64)), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OA(3294, 262168, S32, 25) | [i] | Discarding Parts of the Base for OAs | |
2 | Linear OOA(6478, 166672, F64, 2, 25) (dual of [(166672, 2), 333266, 26]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
3 | Linear OOA(6478, 166672, F64, 3, 25) (dual of [(166672, 3), 499938, 26]-NRT-code) | [i] | ||
4 | Digital (53, 78, 166672)-net over F64 | [i] | ||
5 | Linear OOA(6478, 131084, F64, 2, 25) (dual of [(131084, 2), 262090, 26]-NRT-code) | [i] | OOA Folding | |
6 | Linear OOA(6478, 87389, F64, 3, 25) (dual of [(87389, 3), 262089, 26]-NRT-code) | [i] | ||
7 | Linear OOA(6478, 21847, F64, 25, 25) (dual of [(21847, 25), 546097, 26]-NRT-code) | [i] | OOA Folding and Stacking with Additional Row |