Information on Result #700514
Linear OA(213, 63, F2, 5) (dual of [63, 50, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 63 = 26−1, defining interval I = [0,3], and designed minimum distance d ≥ |I|+1 = 6
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive Cyclic Codes (BCH-Bound) (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(221, 77, F2, 7) (dual of [77, 56, 8]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(227, 77, F2, 9) (dual of [77, 50, 10]-code) | [i] | ✔ | |
3 | Linear OA(2254, 65597, F2, 31) (dual of [65597, 65343, 32]-code) | [i] | Construction X with Extended Narrow-Sense BCH Codes | |
4 | Linear OA(2238, 65597, F2, 29) (dual of [65597, 65359, 30]-code) | [i] | ||
5 | Linear OA(2254, 32826, F2, 33) (dual of [32826, 32572, 34]-code) | [i] | ||
6 | Linear OA(2239, 32826, F2, 31) (dual of [32826, 32587, 32]-code) | [i] | ||
7 | Linear OA(2224, 32826, F2, 29) (dual of [32826, 32602, 30]-code) | [i] | ||
8 | Linear OA(2252, 16439, F2, 35) (dual of [16439, 16187, 36]-code) | [i] | ||
9 | Linear OA(2238, 16439, F2, 33) (dual of [16439, 16201, 34]-code) | [i] | ||
10 | Linear OA(2224, 16439, F2, 31) (dual of [16439, 16215, 32]-code) | [i] | ||
11 | Linear OA(2210, 16439, F2, 29) (dual of [16439, 16229, 30]-code) | [i] | ||
12 | Linear OA(2248, 8244, F2, 37) (dual of [8244, 7996, 38]-code) | [i] | ||
13 | Linear OA(2235, 8244, F2, 35) (dual of [8244, 8009, 36]-code) | [i] | ||
14 | Linear OA(2222, 8244, F2, 33) (dual of [8244, 8022, 34]-code) | [i] | ||
15 | Linear OA(2209, 8244, F2, 31) (dual of [8244, 8035, 32]-code) | [i] | ||
16 | Linear OA(2196, 8244, F2, 29) (dual of [8244, 8048, 30]-code) | [i] | ||
17 | Linear OA(2254, 4145, F2, 41) (dual of [4145, 3891, 42]-code) | [i] | ||
18 | Linear OA(2242, 4145, F2, 39) (dual of [4145, 3903, 40]-code) | [i] | ||
19 | Linear OA(2230, 4145, F2, 37) (dual of [4145, 3915, 38]-code) | [i] | ||
20 | Linear OA(2218, 4145, F2, 35) (dual of [4145, 3927, 36]-code) | [i] | ||
21 | Linear OA(2206, 4145, F2, 33) (dual of [4145, 3939, 34]-code) | [i] | ||
22 | Linear OA(2194, 4145, F2, 31) (dual of [4145, 3951, 32]-code) | [i] | ||
23 | Linear OA(2182, 4145, F2, 29) (dual of [4145, 3963, 30]-code) | [i] | ||
24 | Linear OA(2256, 2094, F2, 45) (dual of [2094, 1838, 46]-code) | [i] | ||
25 | Linear OA(2245, 2094, F2, 43) (dual of [2094, 1849, 44]-code) | [i] | ||
26 | Linear OA(2234, 2094, F2, 41) (dual of [2094, 1860, 42]-code) | [i] | ||
27 | Linear OA(2223, 2094, F2, 39) (dual of [2094, 1871, 40]-code) | [i] | ||
28 | Linear OA(2212, 2094, F2, 37) (dual of [2094, 1882, 38]-code) | [i] | ||
29 | Linear OA(2201, 2094, F2, 35) (dual of [2094, 1893, 36]-code) | [i] | ||
30 | Linear OA(2190, 2094, F2, 33) (dual of [2094, 1904, 34]-code) | [i] | ||
31 | Linear OA(2179, 2094, F2, 31) (dual of [2094, 1915, 32]-code) | [i] | ||
32 | Linear OA(2168, 2094, F2, 29) (dual of [2094, 1926, 30]-code) | [i] | ||
33 | Linear OA(2259, 1067, F2, 51) (dual of [1067, 808, 52]-code) | [i] | ||
34 | Linear OA(2249, 1067, F2, 49) (dual of [1067, 818, 50]-code) | [i] | ||
35 | Linear OA(2239, 1067, F2, 47) (dual of [1067, 828, 48]-code) | [i] | ||
36 | Linear OA(2229, 1067, F2, 45) (dual of [1067, 838, 46]-code) | [i] | ||
37 | Linear OA(2219, 1067, F2, 43) (dual of [1067, 848, 44]-code) | [i] | ||
38 | Linear OA(2209, 1067, F2, 41) (dual of [1067, 858, 42]-code) | [i] | ||
39 | Linear OA(2199, 1062, F2, 39) (dual of [1062, 863, 40]-code) | [i] | ||
40 | Linear OA(2189, 1062, F2, 37) (dual of [1062, 873, 38]-code) | [i] | ||
41 | Linear OA(2179, 1062, F2, 35) (dual of [1062, 883, 36]-code) | [i] | ||
42 | Linear OA(2174, 1067, F2, 33) (dual of [1067, 893, 34]-code) | [i] | ||
43 | Linear OA(2164, 1067, F2, 31) (dual of [1067, 903, 32]-code) | [i] | ||
44 | Linear OA(2154, 1067, F2, 29) (dual of [1067, 913, 30]-code) | [i] | ||
45 | Linear OA(2257, 552, F2, 59) (dual of [552, 295, 60]-code) | [i] | ||
46 | Linear OA(2248, 552, F2, 57) (dual of [552, 304, 58]-code) | [i] | ||
47 | Linear OA(2221, 552, F2, 49) (dual of [552, 331, 50]-code) | [i] | ||
48 | Linear OA(2212, 552, F2, 47) (dual of [552, 340, 48]-code) | [i] | ||
49 | Linear OA(2203, 552, F2, 45) (dual of [552, 349, 46]-code) | [i] | ||
50 | Linear OA(2194, 552, F2, 43) (dual of [552, 358, 44]-code) | [i] | ||
51 | Linear OA(2185, 552, F2, 41) (dual of [552, 367, 42]-code) | [i] | ||
52 | Linear OA(2158, 552, F2, 33) (dual of [552, 394, 34]-code) | [i] | ||
53 | Linear OA(2149, 552, F2, 31) (dual of [552, 403, 32]-code) | [i] | ||
54 | Linear OA(2140, 552, F2, 29) (dual of [552, 412, 30]-code) | [i] | ||
55 | Linear OA(2178, 293, F2, 49) (dual of [293, 115, 50]-code) | [i] | ||
56 | Linear OA(2130, 293, F2, 31) (dual of [293, 163, 32]-code) | [i] | ||
57 | Linear OA(2122, 293, F2, 29) (dual of [293, 171, 30]-code) | [i] | ||
58 | Linear OA(2114, 293, F2, 27) (dual of [293, 179, 28]-code) | [i] | ||
59 | Linear OA(2106, 293, F2, 25) (dual of [293, 187, 26]-code) | [i] |