Information on Result #700534

Linear OA(247, 63, F2, 22) (dual of [63, 16, 23]-code), using the primitive narrow-sense BCH-code C(I) with length 63 = 26−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 23

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2169, 183, F2, 68) (dual of [183, 14, 69]-code) [i]Repeating Each Code Word
2Linear OA(2167, 180, F2, 68) (dual of [180, 13, 69]-code) [i]
3Linear OA(2165, 177, F2, 68) (dual of [177, 12, 69]-code) [i]
4Linear OA(2163, 174, F2, 68) (dual of [174, 11, 69]-code) [i]
5Linear OA(2161, 171, F2, 68) (dual of [171, 10, 69]-code) [i]
6Linear OA(2159, 168, F2, 68) (dual of [168, 9, 69]-code) [i]
7Linear OA(246, 56, F2, 22) (dual of [56, 10, 23]-code) [i]Construction Y1
8Linear OA(260, 78, F2, 26) (dual of [78, 18, 27]-code) [i]Construction XX with Cyclic Codes
9Linear OA(256, 74, F2, 24) (dual of [74, 18, 25]-code) [i]
10Linear OA(275, 91, F2, 32) (dual of [91, 16, 33]-code) [i]
11Linear OOA(247, 31, F2, 2, 22) (dual of [(31, 2), 15, 23]-NRT-code) [i]OOA Folding
12Linear OOA(247, 21, F2, 3, 22) (dual of [(21, 3), 16, 23]-NRT-code) [i]
13Linear OOA(247, 12, F2, 5, 22) (dual of [(12, 5), 13, 23]-NRT-code) [i]