Information on Result #700714
Linear OA(321, 80, F3, 8) (dual of [80, 59, 9]-code), using the primitive cyclic code C(A) with length 80 = 34−1, defining set A = {0,1,2,4,5,53}, and minimum distance d ≥ |{−1,0,…,6}|+1 = 9 (BCH-bound)
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive Cyclic Codes (BCH-Bound) (hidden) [i]
- Primitive Expurgated Narrow-Sense BCH-Codes [i]
- Primitive Cyclic Codes (BCH-Bound) (hidden) [i]
- Primitive Cyclic Codes (BCH-Bound) (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(354, 126, F3, 17) (dual of [126, 72, 18]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(355, 128, F3, 17) (dual of [128, 73, 18]-code) | [i] | ||
3 | Linear OOA(321, 54, F3, 2, 8) (dual of [(54, 2), 87, 9]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
4 | Linear OOA(321, 54, F3, 3, 8) (dual of [(54, 3), 141, 9]-NRT-code) | [i] | ||
5 | Linear OOA(321, 54, F3, 4, 8) (dual of [(54, 4), 195, 9]-NRT-code) | [i] | ||
6 | Linear OOA(321, 54, F3, 5, 8) (dual of [(54, 5), 249, 9]-NRT-code) | [i] | ||
7 | Digital (13, 21, 54)-net over F3 | [i] | ||
8 | Linear OA(3238, 19759, F3, 36) (dual of [19759, 19521, 37]-code) | [i] | Construction X with Cyclic Codes | |
9 | Linear OA(3246, 6631, F3, 42) (dual of [6631, 6385, 43]-code) | [i] | ||
10 | Linear OA(3214, 6631, F3, 36) (dual of [6631, 6417, 37]-code) | [i] | ||
11 | Linear OA(3246, 2251, F3, 48) (dual of [2251, 2005, 49]-code) | [i] | ||
12 | Linear OA(3218, 2251, F3, 42) (dual of [2251, 2033, 43]-code) | [i] | ||
13 | Linear OA(3190, 2251, F3, 36) (dual of [2251, 2061, 37]-code) | [i] | ||
14 | Linear OA(3250, 787, F3, 58) (dual of [787, 537, 59]-code) | [i] | ||
15 | Linear OA(3238, 787, F3, 54) (dual of [787, 549, 55]-code) | [i] | ||
16 | Linear OA(3214, 787, F3, 48) (dual of [787, 573, 49]-code) | [i] | ||
17 | Linear OA(3166, 787, F3, 36) (dual of [787, 621, 37]-code) | [i] | ||
18 | Linear OA(323, 91, F3, 8) (dual of [91, 68, 9]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
19 | Linear OA(322, 89, F3, 8) (dual of [89, 67, 9]-code) | [i] | ✔ | |
20 | Linear OA(325, 88, F3, 9) (dual of [88, 63, 10]-code) | [i] | ✔ | |
21 | Linear OA(337, 101, F3, 12) (dual of [101, 64, 13]-code) | [i] | ✔ | |
22 | Linear OA(336, 99, F3, 12) (dual of [99, 63, 13]-code) | [i] | ✔ | |
23 | Linear OA(3247, 19758, F3, 38) (dual of [19758, 19511, 39]-code) | [i] | Construction X with Extended Narrow-Sense BCH Codes | |
24 | Linear OA(3238, 19758, F3, 37) (dual of [19758, 19520, 38]-code) | [i] | ||
25 | Linear OA(3229, 19758, F3, 35) (dual of [19758, 19529, 36]-code) | [i] | ||
26 | Linear OA(3220, 19758, F3, 34) (dual of [19758, 19538, 35]-code) | [i] | ||
27 | Linear OA(3246, 6630, F3, 43) (dual of [6630, 6384, 44]-code) | [i] | ||
28 | Linear OA(3238, 6630, F3, 41) (dual of [6630, 6392, 42]-code) | [i] | ||
29 | Linear OA(3230, 6630, F3, 40) (dual of [6630, 6400, 41]-code) | [i] | ||
30 | Linear OA(3222, 6630, F3, 38) (dual of [6630, 6408, 39]-code) | [i] | ||
31 | Linear OA(3214, 6630, F3, 37) (dual of [6630, 6416, 38]-code) | [i] | ||
32 | Linear OA(3206, 6630, F3, 35) (dual of [6630, 6424, 36]-code) | [i] | ||
33 | Linear OA(3246, 2250, F3, 49) (dual of [2250, 2004, 50]-code) | [i] | ||
34 | Linear OA(3239, 2250, F3, 47) (dual of [2250, 2011, 48]-code) | [i] | ||
35 | Linear OA(3232, 2250, F3, 46) (dual of [2250, 2018, 47]-code) | [i] | ||
36 | Linear OA(3225, 2250, F3, 44) (dual of [2250, 2025, 45]-code) | [i] | ||
37 | Linear OA(3218, 2250, F3, 43) (dual of [2250, 2032, 44]-code) | [i] | ||
38 | Linear OA(3211, 2250, F3, 41) (dual of [2250, 2039, 42]-code) | [i] | ||
39 | Linear OA(3204, 2250, F3, 40) (dual of [2250, 2046, 41]-code) | [i] | ||
40 | Linear OA(3197, 2250, F3, 38) (dual of [2250, 2053, 39]-code) | [i] | ||
41 | Linear OA(3190, 2250, F3, 37) (dual of [2250, 2060, 38]-code) | [i] | ||
42 | Linear OA(3183, 2250, F3, 35) (dual of [2250, 2067, 36]-code) | [i] | ||
43 | Linear OA(3235, 786, F3, 55) (dual of [786, 551, 56]-code) | [i] | ||
44 | Linear OA(3229, 786, F3, 53) (dual of [786, 557, 54]-code) | [i] | ||
45 | Linear OA(3223, 786, F3, 52) (dual of [786, 563, 53]-code) | [i] | ||
46 | Linear OA(3217, 786, F3, 50) (dual of [786, 569, 51]-code) | [i] | ||
47 | Linear OA(3211, 786, F3, 49) (dual of [786, 575, 50]-code) | [i] | ||
48 | Linear OA(3205, 786, F3, 47) (dual of [786, 581, 48]-code) | [i] | ||
49 | Linear OA(3199, 786, F3, 46) (dual of [786, 587, 47]-code) | [i] | ||
50 | Linear OA(3193, 786, F3, 44) (dual of [786, 593, 45]-code) | [i] | ||
51 | Linear OA(3187, 786, F3, 43) (dual of [786, 599, 44]-code) | [i] | ||
52 | Linear OA(3181, 786, F3, 41) (dual of [786, 605, 42]-code) | [i] | ||
53 | Linear OA(3175, 786, F3, 40) (dual of [786, 611, 41]-code) | [i] | ||
54 | Linear OA(3169, 786, F3, 38) (dual of [786, 617, 39]-code) | [i] | ||
55 | Linear OA(3163, 783, F3, 37) (dual of [783, 620, 38]-code) | [i] | ||
56 | Linear OA(3157, 783, F3, 35) (dual of [783, 626, 36]-code) | [i] | ||
57 | Linear OA(3151, 783, F3, 34) (dual of [783, 632, 35]-code) | [i] | ||
58 | Linear OA(3145, 783, F3, 32) (dual of [783, 638, 33]-code) | [i] | ||
59 | Linear OA(3139, 783, F3, 31) (dual of [783, 644, 32]-code) | [i] |