Information on Result #701112

Linear OA(459, 63, F4, 46) (dual of [63, 4, 47]-code), using the primitive cyclic code C(A) with length 63 = 43−1, defining set A = {0,1,2,3,5,6,7,9,10,11,13,14,15,21,22,23,26,27,30,31,43}, and minimum distance d ≥ |{1,6,11,…,−26}|+1 = 47 (BCH-bound)

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(2244, 126, F2, 2, 140) (dual of [(126, 2), 8, 141]-NRT-code) [i]Concatenation of Two NRT-Codes
2Linear OOA(2242, 124, F2, 2, 140) (dual of [(124, 2), 6, 141]-NRT-code) [i]
3Linear OA(468, 75, F4, 50) (dual of [75, 7, 51]-code) [i]Construction XX with Cyclic Codes
4Linear OOA(459, 31, F4, 2, 46) (dual of [(31, 2), 3, 47]-NRT-code) [i]OOA Folding
5Linear OOA(459, 21, F4, 3, 46) (dual of [(21, 3), 4, 47]-NRT-code) [i]