Information on Result #701451

Linear OA(732, 48, F7, 23) (dual of [48, 16, 24]-code), using the primitive narrow-sense BCH-code C(I) with length 48 = 72−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 24

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(732, 48, F7, 22) (dual of [48, 16, 23]-code) [i]Strength Reduction
2Linear OA(732, 48, F7, 21) (dual of [48, 16, 22]-code) [i]
3Linear OA(777, 90, F7, 47) (dual of [90, 13, 48]-code) [i]Repeating Each Code Word
4Linear OA(776, 88, F7, 47) (dual of [88, 12, 48]-code) [i]
5Linear OA(775, 86, F7, 47) (dual of [86, 11, 48]-code) [i]
6Linear OA(774, 84, F7, 47) (dual of [84, 10, 48]-code) [i]
7Linear OA(743, 63, F7, 26) (dual of [63, 20, 27]-code) [i]Construction XX with Cyclic Codes
8Linear OA(743, 59, F7, 28) (dual of [59, 16, 29]-code) [i]
9Linear OA(757, 73, F7, 35) (dual of [73, 16, 36]-code) [i]
10Linear OA(745, 74, F7, 23) (dual of [74, 29, 24]-code) [i]
11Linear OA(744, 71, F7, 23) (dual of [71, 27, 24]-code) [i]
12Linear OA(741, 67, F7, 22) (dual of [67, 26, 23]-code) [i]
13Linear OA(754, 74, F7, 31) (dual of [74, 20, 32]-code) [i]
14Linear OA(752, 72, F7, 30) (dual of [72, 20, 31]-code) [i]
15Linear OA(753, 72, F7, 31) (dual of [72, 19, 32]-code) [i]
16Linear OA(752, 70, F7, 31) (dual of [70, 18, 32]-code) [i]
17Linear OA(755, 74, F7, 32) (dual of [74, 19, 33]-code) [i]
18Linear OOA(732, 24, F7, 2, 23) (dual of [(24, 2), 16, 24]-NRT-code) [i]OOA Folding
19Linear OOA(732, 16, F7, 3, 23) (dual of [(16, 3), 16, 24]-NRT-code) [i]