Information on Result #701660
Linear OA(2140, 255, F2, 42) (dual of [255, 115, 43]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,42], and designed minimum distance d ≥ |I|+1 = 43
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2140, 255, F2, 41) (dual of [255, 115, 42]-code) | [i] | Strength Reduction | |
2 | Linear OA(2140, 255, F2, 40) (dual of [255, 115, 41]-code) | [i] | ||
3 | Linear OA(2142, 257, F2, 42) (dual of [257, 115, 43]-code) | [i] | Code Embedding in Larger Space | |
4 | Linear OA(2139, 207, F2, 42) (dual of [207, 68, 43]-code) | [i] | Construction Y1 | |
5 | Linear OA(2176, 291, F2, 48) (dual of [291, 115, 49]-code) | [i] | ✔ | Construction X with Cyclic Codes |
6 | Linear OA(2168, 291, F2, 46) (dual of [291, 123, 47]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
7 | Linear OA(2162, 277, F2, 47) (dual of [277, 115, 48]-code) | [i] | ✔ | |
8 | Linear OA(2159, 274, F2, 46) (dual of [274, 115, 47]-code) | [i] | ✔ | |
9 | Linear OA(2176, 291, F2, 49) (dual of [291, 115, 50]-code) | [i] | ✔ | |
10 | Linear OA(2172, 287, F2, 48) (dual of [287, 115, 49]-code) | [i] | ✔ | |
11 | Linear OA(2171, 280, F2, 48) (dual of [280, 109, 49]-code) | [i] | ✔ | |
12 | Linear OOA(2140, 127, F2, 2, 42) (dual of [(127, 2), 114, 43]-NRT-code) | [i] | OOA Folding | |
13 | Linear OOA(2140, 85, F2, 3, 42) (dual of [(85, 3), 115, 43]-NRT-code) | [i] | ||
14 | Linear OOA(2140, 63, F2, 4, 42) (dual of [(63, 4), 112, 43]-NRT-code) | [i] | ||
15 | Linear OOA(2140, 51, F2, 5, 42) (dual of [(51, 5), 115, 43]-NRT-code) | [i] |