Information on Result #701731

Linear OA(277, 255, F2, 21) (dual of [255, 178, 22]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−18,−17,…,2}, and designed minimum distance d ≥ |I|+1 = 22

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(289, 296, F2, 20) (dual of [296, 207, 21]-code) [i]Construction XX with Cyclic Codes
2Linear OA(289, 295, F2, 21) (dual of [295, 206, 22]-code) [i]
3Linear OA(287, 286, F2, 21) (dual of [286, 199, 22]-code) [i]
4Linear OA(284, 283, F2, 20) (dual of [283, 199, 21]-code) [i]
5Linear OA(283, 281, F2, 20) (dual of [281, 198, 21]-code) [i]
6Linear OA(283, 280, F2, 21) (dual of [280, 197, 22]-code) [i]
7Linear OA(2117, 304, F2, 27) (dual of [304, 187, 28]-code) [i]
8Linear OA(2114, 301, F2, 26) (dual of [301, 187, 27]-code) [i]
9Linear OOA(277, 85, F2, 3, 21) (dual of [(85, 3), 178, 22]-NRT-code) [i]OOA Folding
10Linear OOA(277, 51, F2, 5, 21) (dual of [(51, 5), 178, 22]-NRT-code) [i]
11Linear OOA(277, 42, F2, 6, 21) (dual of [(42, 6), 175, 22]-NRT-code) [i]