Information on Result #701752

Linear OA(279, 270, F2, 20) (dual of [270, 191, 21]-code), using construction XX applied to C1 = C([253,16]), C2 = C([1,18]), C3 = C1 + C2 = C([1,16]), and C∩ = C1 ∩ C2 = C([253,18]) based on
  1. linear OA(273, 255, F2, 19) (dual of [255, 182, 20]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,16}, and designed minimum distance d ≥ |I|+1 = 20 [i]
  2. linear OA(268, 255, F2, 18) (dual of [255, 187, 19]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
  3. linear OA(277, 255, F2, 21) (dual of [255, 178, 22]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,18}, and designed minimum distance d ≥ |I|+1 = 22 [i]
  4. linear OA(264, 255, F2, 16) (dual of [255, 191, 17]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,16], and designed minimum distance d ≥ |I|+1 = 17 [i]
  5. linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
  6. linear OA(21, 5, F2, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(280, 271, F2, 21) (dual of [271, 191, 22]-code) [i]Adding a Parity Check Bit
2Linear OOA(279, 135, F2, 2, 20) (dual of [(135, 2), 191, 21]-NRT-code) [i]OOA Folding
3Linear OOA(279, 90, F2, 3, 20) (dual of [(90, 3), 191, 21]-NRT-code) [i]
4Linear OOA(279, 54, F2, 5, 20) (dual of [(54, 5), 191, 21]-NRT-code) [i]
5Linear OOA(279, 45, F2, 6, 20) (dual of [(45, 6), 191, 21]-NRT-code) [i]