Information on Result #701843

Linear OA(2108, 255, F2, 28) (dual of [255, 147, 29]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−28,−27,…,−1}, and designed minimum distance d ≥ |I|+1 = 29

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2133, 304, F2, 31) (dual of [304, 171, 32]-code) [i]Construction XX with Cyclic Codes
2Linear OA(2130, 301, F2, 30) (dual of [301, 171, 31]-code) [i]
3Linear OA(2153, 300, F2, 39) (dual of [300, 147, 40]-code) [i]
4Linear OA(2150, 297, F2, 38) (dual of [297, 147, 39]-code) [i]
5Linear OA(2149, 293, F2, 38) (dual of [293, 144, 39]-code) [i]
6Linear OA(2149, 292, F2, 39) (dual of [292, 143, 40]-code) [i]
7Linear OA(2146, 289, F2, 38) (dual of [289, 143, 39]-code) [i]
8Linear OA(2163, 310, F2, 40) (dual of [310, 147, 41]-code) [i]
9Linear OA(2162, 306, F2, 40) (dual of [306, 144, 41]-code) [i]
10Linear OA(2159, 302, F2, 40) (dual of [302, 143, 41]-code) [i]
11Linear OOA(2108, 127, F2, 2, 28) (dual of [(127, 2), 146, 29]-NRT-code) [i]OOA Folding
12Linear OOA(2108, 85, F2, 3, 28) (dual of [(85, 3), 147, 29]-NRT-code) [i]
13Linear OOA(2108, 63, F2, 4, 28) (dual of [(63, 4), 144, 29]-NRT-code) [i]