Information on Result #701883
Linear OA(2124, 255, F2, 36) (dual of [255, 131, 37]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−36,−35,…,−1}, and designed minimum distance d ≥ |I|+1 = 37
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2124, 255, F2, 35) (dual of [255, 131, 36]-code) | [i] | Strength Reduction | |
2 | Linear OA(2124, 255, F2, 34) (dual of [255, 131, 35]-code) | [i] | ||
3 | Linear OA(2126, 257, F2, 36) (dual of [257, 131, 37]-code) | [i] | Code Embedding in Larger Space | |
4 | Linear OA(2127, 258, F2, 36) (dual of [258, 131, 37]-code) | [i] | ||
5 | Linear OA(2128, 259, F2, 36) (dual of [259, 131, 37]-code) | [i] | ||
6 | Linear OA(2157, 309, F2, 38) (dual of [309, 152, 39]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
7 | Linear OA(2155, 306, F2, 38) (dual of [306, 151, 39]-code) | [i] | ✔ | |
8 | Linear OA(2153, 300, F2, 39) (dual of [300, 147, 40]-code) | [i] | ✔ | |
9 | Linear OA(2150, 297, F2, 38) (dual of [297, 147, 39]-code) | [i] | ✔ | |
10 | Linear OA(2149, 293, F2, 38) (dual of [293, 144, 39]-code) | [i] | ✔ | |
11 | Linear OA(2149, 292, F2, 39) (dual of [292, 143, 40]-code) | [i] | ✔ | |
12 | Linear OA(2146, 289, F2, 38) (dual of [289, 143, 39]-code) | [i] | ✔ | |
13 | Linear OA(2143, 282, F2, 38) (dual of [282, 139, 39]-code) | [i] | ✔ | |
14 | Linear OA(2142, 277, F2, 38) (dual of [277, 135, 39]-code) | [i] | ✔ | |
15 | Linear OA(2141, 274, F2, 38) (dual of [274, 133, 39]-code) | [i] | ✔ | |
16 | Linear OA(2163, 310, F2, 40) (dual of [310, 147, 41]-code) | [i] | ✔ | |
17 | Linear OA(2162, 306, F2, 40) (dual of [306, 144, 41]-code) | [i] | ✔ | |
18 | Linear OA(2159, 302, F2, 40) (dual of [302, 143, 41]-code) | [i] | ✔ | |
19 | Linear OA(2156, 295, F2, 40) (dual of [295, 139, 41]-code) | [i] | ✔ | |
20 | Linear OA(2164, 295, F2, 45) (dual of [295, 131, 46]-code) | [i] | ✔ | |
21 | Linear OA(2161, 292, F2, 44) (dual of [292, 131, 45]-code) | [i] | ✔ | |
22 | Linear OA(2160, 287, F2, 44) (dual of [287, 127, 45]-code) | [i] | ✔ | |
23 | Linear OA(2159, 283, F2, 44) (dual of [283, 124, 45]-code) | [i] | ✔ | |
24 | Linear OA(2174, 305, F2, 46) (dual of [305, 131, 47]-code) | [i] | ✔ | |
25 | Linear OA(2173, 300, F2, 46) (dual of [300, 127, 47]-code) | [i] | ✔ | |
26 | Linear OA(2172, 296, F2, 46) (dual of [296, 124, 47]-code) | [i] | ✔ | |
27 | Linear OOA(2124, 127, F2, 2, 36) (dual of [(127, 2), 130, 37]-NRT-code) | [i] | OOA Folding | |
28 | Linear OOA(2124, 85, F2, 3, 36) (dual of [(85, 3), 131, 37]-NRT-code) | [i] | ||
29 | Linear OOA(2124, 63, F2, 4, 36) (dual of [(63, 4), 128, 37]-NRT-code) | [i] | ||
30 | Linear OOA(2124, 51, F2, 5, 36) (dual of [(51, 5), 131, 37]-NRT-code) | [i] |