Information on Result #701889

Linear OA(2137, 287, F2, 35) (dual of [287, 150, 36]-code), using construction XX applied to C1 = C([239,16]), C2 = C([237,10]), C3 = C1 + C2 = C([239,10]), and C∩ = C1 ∩ C2 = C([237,16]) based on
  1. linear OA(2121, 255, F2, 33) (dual of [255, 134, 34]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−16,−15,…,16}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  2. linear OA(2109, 255, F2, 29) (dual of [255, 146, 30]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−18,−17,…,10}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  3. linear OA(2125, 255, F2, 35) (dual of [255, 130, 36]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−18,−17,…,16}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  4. linear OA(2105, 255, F2, 27) (dual of [255, 150, 28]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−16,−15,…,10}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  5. linear OA(211, 27, F2, 5) (dual of [27, 16, 6]-code), using
  6. linear OA(21, 5, F2, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2137, 287, F2, 34) (dual of [287, 150, 35]-code) [i]Strength Reduction
2Linear OA(2138, 288, F2, 35) (dual of [288, 150, 36]-code) [i]Code Embedding in Larger Space
3Linear OA(2139, 289, F2, 35) (dual of [289, 150, 36]-code) [i]
4Linear OA(2136, 286, F2, 34) (dual of [286, 150, 35]-code) [i]Truncation
5Linear OOA(2137, 143, F2, 2, 35) (dual of [(143, 2), 149, 36]-NRT-code) [i]OOA Folding
6Linear OOA(2137, 95, F2, 3, 35) (dual of [(95, 3), 148, 36]-NRT-code) [i]