Information on Result #703106

Linear OA(331, 242, F3, 9) (dual of [242, 211, 10]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {114,115,…,122}, and designed minimum distance d ≥ |I|+1 = 10

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(331, 182, F3, 2, 9) (dual of [(182, 2), 333, 10]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(331, 182, F3, 3, 9) (dual of [(182, 3), 515, 10]-NRT-code) [i]
3Linear OOA(331, 182, F3, 4, 9) (dual of [(182, 4), 697, 10]-NRT-code) [i]
4Linear OOA(331, 182, F3, 5, 9) (dual of [(182, 5), 879, 10]-NRT-code) [i]
5Digital (22, 31, 182)-net over F3 [i]
6Linear OA(334, 260, F3, 9) (dual of [260, 226, 10]-code) [i]Construction XX with Cyclic Codes
7Linear OA(345, 262, F3, 12) (dual of [262, 217, 13]-code) [i]
8Linear OA(337, 253, F3, 11) (dual of [253, 216, 12]-code) [i]
9Linear OA(344, 260, F3, 12) (dual of [260, 216, 13]-code) [i]
10Linear OA(353, 269, F3, 14) (dual of [269, 216, 15]-code) [i]
11Linear OA(343, 254, F3, 13) (dual of [254, 211, 14]-code) [i]