Information on Result #703128
Linear OA(330, 242, F3, 9) (dual of [242, 212, 10]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {112,113,…,120}, and designed minimum distance d ≥ |I|+1 = 10
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(330, 155, F3, 2, 9) (dual of [(155, 2), 280, 10]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(330, 155, F3, 3, 9) (dual of [(155, 3), 435, 10]-NRT-code) | [i] | ||
3 | Linear OOA(330, 155, F3, 4, 9) (dual of [(155, 4), 590, 10]-NRT-code) | [i] | ||
4 | Linear OOA(330, 155, F3, 5, 9) (dual of [(155, 5), 745, 10]-NRT-code) | [i] | ||
5 | Digital (21, 30, 155)-net over F3 | [i] | ||
6 | Linear OA(340, 262, F3, 11) (dual of [262, 222, 12]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
7 | Linear OA(350, 262, F3, 14) (dual of [262, 212, 15]-code) | [i] | ✔ | |
8 | Linear OOA(330, 121, F3, 2, 9) (dual of [(121, 2), 212, 10]-NRT-code) | [i] | OOA Folding | |
9 | Linear OOA(330, 80, F3, 3, 9) (dual of [(80, 3), 210, 10]-NRT-code) | [i] | ||
10 | Linear OOA(330, 60, F3, 4, 9) (dual of [(60, 4), 210, 10]-NRT-code) | [i] |