Information on Result #703148

Linear OA(346, 242, F3, 14) (dual of [242, 196, 15]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {109,110,…,122}, and designed minimum distance d ≥ |I|+1 = 15

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(346, 153, F3, 2, 14) (dual of [(153, 2), 260, 15]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(346, 153, F3, 3, 14) (dual of [(153, 3), 413, 15]-NRT-code) [i]
3Linear OOA(346, 153, F3, 4, 14) (dual of [(153, 4), 566, 15]-NRT-code) [i]
4Linear OOA(346, 153, F3, 5, 14) (dual of [(153, 5), 719, 15]-NRT-code) [i]
5Digital (32, 46, 153)-net over F3 [i]
6Linear OA(353, 269, F3, 14) (dual of [269, 216, 15]-code) [i]Construction XX with Cyclic Codes
7Linear OA(350, 262, F3, 14) (dual of [262, 212, 15]-code) [i]
8Linear OA(347, 253, F3, 14) (dual of [253, 206, 15]-code) [i]
9Linear OA(353, 254, F3, 16) (dual of [254, 201, 17]-code) [i]
10Linear OA(360, 262, F3, 17) (dual of [262, 202, 18]-code) [i]
11Linear OA(367, 269, F3, 18) (dual of [269, 202, 19]-code) [i]
12Linear OA(375, 277, F3, 20) (dual of [277, 202, 21]-code) [i]