Information on Result #703174

Linear OA(355, 261, F3, 15) (dual of [261, 206, 16]-code), using construction XX applied to C1 = C([239,10]), C2 = C([1,12]), C3 = C1 + C2 = C([1,10]), and C∩ = C1 ∩ C2 = C([239,12]) based on
  1. linear OA(346, 242, F3, 14) (dual of [242, 196, 15]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,10}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  2. linear OA(340, 242, F3, 12) (dual of [242, 202, 13]-code), using the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13 [i]
  3. linear OA(351, 242, F3, 16) (dual of [242, 191, 17]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {−3,−2,…,12}, and designed minimum distance d ≥ |I|+1 = 17 [i]
  4. linear OA(335, 242, F3, 10) (dual of [242, 207, 11]-code), using the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
  5. linear OA(33, 13, F3, 2) (dual of [13, 10, 3]-code), using
  6. linear OA(31, 6, F3, 1) (dual of [6, 5, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(355, 261, F3, 2, 15) (dual of [(261, 2), 467, 16]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(355, 261, F3, 3, 15) (dual of [(261, 3), 728, 16]-NRT-code) [i]
3Linear OOA(355, 261, F3, 4, 15) (dual of [(261, 4), 989, 16]-NRT-code) [i]
4Linear OOA(355, 261, F3, 5, 15) (dual of [(261, 5), 1250, 16]-NRT-code) [i]
5Digital (40, 55, 261)-net over F3 [i]