Information on Result #703183

Linear OA(356, 242, F3, 17) (dual of [242, 186, 18]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {106,107,…,122}, and designed minimum distance d ≥ |I|+1 = 18

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(356, 169, F3, 2, 17) (dual of [(169, 2), 282, 18]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(356, 169, F3, 3, 17) (dual of [(169, 3), 451, 18]-NRT-code) [i]
3Linear OOA(356, 169, F3, 4, 17) (dual of [(169, 4), 620, 18]-NRT-code) [i]
4Linear OOA(356, 169, F3, 5, 17) (dual of [(169, 5), 789, 18]-NRT-code) [i]
5Digital (39, 56, 169)-net over F3 [i]
6Linear OA(363, 269, F3, 17) (dual of [269, 206, 18]-code) [i]Construction XX with Cyclic Codes
7Linear OA(360, 262, F3, 17) (dual of [262, 202, 18]-code) [i]
8Linear OA(357, 253, F3, 17) (dual of [253, 196, 18]-code) [i]
9Linear OA(363, 254, F3, 19) (dual of [254, 191, 20]-code) [i]
10Linear OA(370, 262, F3, 20) (dual of [262, 192, 21]-code) [i]
11Linear OA(377, 269, F3, 21) (dual of [269, 192, 22]-code) [i]
12Linear OA(385, 277, F3, 23) (dual of [277, 192, 24]-code) [i]