Information on Result #703185

Linear OA(341, 242, F3, 13) (dual of [242, 201, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(341, 125, F3, 2, 13) (dual of [(125, 2), 209, 14]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(341, 125, F3, 3, 13) (dual of [(125, 3), 334, 14]-NRT-code) [i]
3Linear OOA(341, 125, F3, 4, 13) (dual of [(125, 4), 459, 14]-NRT-code) [i]
4Linear OOA(341, 125, F3, 5, 13) (dual of [(125, 5), 584, 14]-NRT-code) [i]
5Digital (28, 41, 125)-net over F3 [i]
6Linear OA(357, 268, F3, 16) (dual of [268, 211, 17]-code) [i]Construction XX with Cyclic Codes
7Linear OA(355, 266, F3, 15) (dual of [266, 211, 16]-code) [i]
8Linear OA(355, 261, F3, 16) (dual of [261, 206, 17]-code) [i]
9Linear OA(353, 259, F3, 15) (dual of [259, 206, 16]-code) [i]
10Linear OA(362, 268, F3, 17) (dual of [268, 206, 18]-code) [i]
11Linear OA(351, 252, F3, 15) (dual of [252, 201, 16]-code) [i]
12Linear OA(359, 260, F3, 17) (dual of [260, 201, 18]-code) [i]
13Linear OA(366, 267, F3, 18) (dual of [267, 201, 19]-code) [i]
14Linear OA(374, 275, F3, 20) (dual of [275, 201, 21]-code) [i]
15Linear OA(367, 268, F3, 19) (dual of [268, 201, 20]-code) [i]
16Linear OA(365, 266, F3, 18) (dual of [266, 201, 19]-code) [i]
17Linear OA(380, 281, F3, 21) (dual of [281, 201, 22]-code) [i]
18Linear OOA(341, 48, F3, 5, 13) (dual of [(48, 5), 199, 14]-NRT-code) [i]OOA Folding