Information on Result #703208

Linear OA(361, 242, F3, 18) (dual of [242, 181, 19]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {105,106,…,122}, and designed minimum distance d ≥ |I|+1 = 19

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(361, 197, F3, 2, 18) (dual of [(197, 2), 333, 19]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(361, 197, F3, 3, 18) (dual of [(197, 3), 530, 19]-NRT-code) [i]
3Linear OOA(361, 197, F3, 4, 18) (dual of [(197, 4), 727, 19]-NRT-code) [i]
4Linear OOA(361, 197, F3, 5, 18) (dual of [(197, 5), 924, 19]-NRT-code) [i]
5Digital (43, 61, 197)-net over F3 [i]
6Linear OA(367, 269, F3, 18) (dual of [269, 202, 19]-code) [i]Construction XX with Cyclic Codes
7Linear OA(365, 262, F3, 18) (dual of [262, 197, 19]-code) [i]
8Linear OA(364, 260, F3, 18) (dual of [260, 196, 19]-code) [i]
9Linear OA(375, 262, F3, 21) (dual of [262, 187, 22]-code) [i]
10Linear OA(367, 253, F3, 20) (dual of [253, 186, 21]-code) [i]
11Linear OA(374, 260, F3, 21) (dual of [260, 186, 22]-code) [i]
12Linear OA(390, 277, F3, 24) (dual of [277, 187, 25]-code) [i]
13Linear OA(383, 269, F3, 23) (dual of [269, 186, 24]-code) [i]
14Linear OA(389, 275, F3, 24) (dual of [275, 186, 25]-code) [i]
15Linear OA(373, 254, F3, 22) (dual of [254, 181, 23]-code) [i]