Information on Result #703208
Linear OA(361, 242, F3, 18) (dual of [242, 181, 19]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {105,106,…,122}, and designed minimum distance d ≥ |I|+1 = 19
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(361, 197, F3, 2, 18) (dual of [(197, 2), 333, 19]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(361, 197, F3, 3, 18) (dual of [(197, 3), 530, 19]-NRT-code) | [i] | ||
3 | Linear OOA(361, 197, F3, 4, 18) (dual of [(197, 4), 727, 19]-NRT-code) | [i] | ||
4 | Linear OOA(361, 197, F3, 5, 18) (dual of [(197, 5), 924, 19]-NRT-code) | [i] | ||
5 | Digital (43, 61, 197)-net over F3 | [i] | ||
6 | Linear OA(367, 269, F3, 18) (dual of [269, 202, 19]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
7 | Linear OA(365, 262, F3, 18) (dual of [262, 197, 19]-code) | [i] | ✔ | |
8 | Linear OA(364, 260, F3, 18) (dual of [260, 196, 19]-code) | [i] | ✔ | |
9 | Linear OA(375, 262, F3, 21) (dual of [262, 187, 22]-code) | [i] | ✔ | |
10 | Linear OA(367, 253, F3, 20) (dual of [253, 186, 21]-code) | [i] | ✔ | |
11 | Linear OA(374, 260, F3, 21) (dual of [260, 186, 22]-code) | [i] | ✔ | |
12 | Linear OA(390, 277, F3, 24) (dual of [277, 187, 25]-code) | [i] | ✔ | |
13 | Linear OA(383, 269, F3, 23) (dual of [269, 186, 24]-code) | [i] | ✔ | |
14 | Linear OA(389, 275, F3, 24) (dual of [275, 186, 25]-code) | [i] | ✔ | |
15 | Linear OA(373, 254, F3, 22) (dual of [254, 181, 23]-code) | [i] | ✔ |