Information on Result #703213
Linear OA(350, 242, F3, 15) (dual of [242, 192, 16]-code), using the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,15], and designed minimum distance d ≥ |I|+1 = 16
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(350, 168, F3, 2, 15) (dual of [(168, 2), 286, 16]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(350, 168, F3, 3, 15) (dual of [(168, 3), 454, 16]-NRT-code) | [i] | ||
3 | Linear OOA(350, 168, F3, 4, 15) (dual of [(168, 4), 622, 16]-NRT-code) | [i] | ||
4 | Linear OOA(350, 168, F3, 5, 15) (dual of [(168, 5), 790, 16]-NRT-code) | [i] | ||
5 | Digital (35, 50, 168)-net over F3 | [i] | ||
6 | Linear OA(358, 255, F3, 17) (dual of [255, 197, 18]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
7 | Linear OA(367, 264, F3, 19) (dual of [264, 197, 20]-code) | [i] | ✔ | |
8 | Linear OA(365, 261, F3, 18) (dual of [261, 196, 19]-code) | [i] | ✔ | |
9 | Linear OA(380, 276, F3, 21) (dual of [276, 196, 22]-code) | [i] | ✔ | |
10 | Linear OA(392, 283, F3, 24) (dual of [283, 191, 25]-code) | [i] | ✔ | |
11 | Linear OOA(350, 121, F3, 2, 15) (dual of [(121, 2), 192, 16]-NRT-code) | [i] | OOA Folding | |
12 | Linear OOA(350, 80, F3, 3, 15) (dual of [(80, 3), 190, 16]-NRT-code) | [i] | ||
13 | Linear OOA(350, 60, F3, 4, 15) (dual of [(60, 4), 190, 16]-NRT-code) | [i] |