Information on Result #703227

Linear OA(371, 242, F3, 21) (dual of [242, 171, 22]-code), using the primitive BCH-code C(I) with length 242 = 35−1, defining interval I = {102,103,…,122}, and designed minimum distance d ≥ |I|+1 = 22

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(380, 277, F3, 21) (dual of [277, 197, 22]-code) [i]Construction XX with Cyclic Codes
2Linear OA(379, 275, F3, 21) (dual of [275, 196, 22]-code) [i]
3Linear OA(377, 269, F3, 21) (dual of [269, 192, 22]-code) [i]
4Linear OA(375, 262, F3, 21) (dual of [262, 187, 22]-code) [i]
5Linear OA(374, 260, F3, 21) (dual of [260, 186, 22]-code) [i]
6Linear OA(385, 262, F3, 24) (dual of [262, 177, 25]-code) [i]
7Linear OA(377, 253, F3, 23) (dual of [253, 176, 24]-code) [i]
8Linear OA(384, 260, F3, 24) (dual of [260, 176, 25]-code) [i]
9Linear OA(3100, 277, F3, 27) (dual of [277, 177, 28]-code) [i]
10Linear OA(393, 269, F3, 26) (dual of [269, 176, 27]-code) [i]
11Linear OA(399, 275, F3, 27) (dual of [275, 176, 28]-code) [i]
12Linear OA(383, 254, F3, 25) (dual of [254, 171, 26]-code) [i]