Information on Result #703309
Linear OA(370, 242, F3, 21) (dual of [242, 172, 22]-code), using the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(375, 269, F3, 21) (dual of [269, 194, 22]-code) | [i] | Varšamov–Edel Lengthening | |
2 | Linear OA(376, 282, F3, 21) (dual of [282, 206, 22]-code) | [i] | ||
3 | Linear OA(377, 296, F3, 21) (dual of [296, 219, 22]-code) | [i] | ||
4 | Linear OA(378, 312, F3, 21) (dual of [312, 234, 22]-code) | [i] | ||
5 | Linear OA(378, 255, F3, 23) (dual of [255, 177, 24]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
6 | Linear OA(387, 264, F3, 25) (dual of [264, 177, 26]-code) | [i] | ✔ | |
7 | Linear OA(385, 261, F3, 24) (dual of [261, 176, 25]-code) | [i] | ✔ | |
8 | Linear OA(3102, 283, F3, 27) (dual of [283, 181, 28]-code) | [i] | ✔ | |
9 | Linear OA(3100, 276, F3, 27) (dual of [276, 176, 28]-code) | [i] | ✔ | |
10 | Linear OA(3105, 274, F3, 30) (dual of [274, 169, 31]-code) | [i] | ✔ | |
11 | Linear OOA(370, 121, F3, 2, 21) (dual of [(121, 2), 172, 22]-NRT-code) | [i] | OOA Folding | |
12 | Linear OOA(370, 80, F3, 3, 21) (dual of [(80, 3), 170, 22]-NRT-code) | [i] |