Information on Result #704383

Linear OA(391, 728, F3, 23) (dual of [728, 637, 24]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−3,−2,…,19}, and designed minimum distance d ≥ |I|+1 = 24

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(391, 463, F3, 2, 23) (dual of [(463, 2), 835, 24]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(391, 463, F3, 3, 23) (dual of [(463, 3), 1298, 24]-NRT-code) [i]
3Linear OOA(391, 463, F3, 4, 23) (dual of [(463, 4), 1761, 24]-NRT-code) [i]
4Linear OOA(391, 463, F3, 5, 23) (dual of [(463, 5), 2224, 24]-NRT-code) [i]
5Digital (68, 91, 463)-net over F3 [i]
6Linear OA(396, 752, F3, 23) (dual of [752, 656, 24]-code) [i]Construction XX with Cyclic Codes
7Linear OA(395, 750, F3, 23) (dual of [750, 655, 24]-code) [i]
8Linear OA(394, 747, F3, 23) (dual of [747, 653, 24]-code) [i]
9Linear OA(3103, 753, F3, 25) (dual of [753, 650, 26]-code) [i]
10Linear OA(3101, 748, F3, 24) (dual of [748, 647, 25]-code) [i]
11Linear OA(3102, 751, F3, 25) (dual of [751, 649, 26]-code) [i]
12Linear OA(399, 748, F3, 24) (dual of [748, 649, 25]-code) [i]
13Linear OA(3101, 748, F3, 25) (dual of [748, 647, 26]-code) [i]