Information on Result #704634
Linear OA(3136, 728, F3, 35) (dual of [728, 592, 36]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {−6,−5,…,28}, and designed minimum distance d ≥ |I|+1 = 36
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive Expurgated Narrow-Sense BCH-Codes [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3160, 796, F3, 35) (dual of [796, 636, 36]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(3155, 785, F3, 35) (dual of [785, 630, 36]-code) | [i] | ✔ | |
3 | Linear OA(3154, 780, F3, 35) (dual of [780, 626, 36]-code) | [i] | ✔ | |
4 | Linear OA(3153, 777, F3, 35) (dual of [777, 624, 36]-code) | [i] | ✔ | |
5 | Linear OA(3156, 793, F3, 35) (dual of [793, 637, 36]-code) | [i] | ✔ | |
6 | Linear OA(3154, 787, F3, 35) (dual of [787, 633, 36]-code) | [i] | ✔ | |
7 | Linear OA(3151, 782, F3, 35) (dual of [782, 631, 36]-code) | [i] | ✔ | |
8 | Linear OA(3149, 776, F3, 35) (dual of [776, 627, 36]-code) | [i] | ✔ | |
9 | Linear OA(3147, 768, F3, 35) (dual of [768, 621, 36]-code) | [i] | ✔ | |
10 | Linear OA(3146, 765, F3, 35) (dual of [765, 619, 36]-code) | [i] | ✔ | |
11 | Linear OA(3144, 759, F3, 35) (dual of [759, 615, 36]-code) | [i] | ✔ | |
12 | Linear OA(3153, 769, F3, 36) (dual of [769, 616, 37]-code) | [i] | ✔ | |
13 | Linear OA(3157, 772, F3, 37) (dual of [772, 615, 38]-code) | [i] | ✔ | |
14 | Linear OA(3151, 763, F3, 36) (dual of [763, 612, 37]-code) | [i] | ✔ | |
15 | Linear OA(3153, 769, F3, 37) (dual of [769, 616, 38]-code) | [i] | ✔ | |
16 | Linear OA(3151, 767, F3, 36) (dual of [767, 616, 37]-code) | [i] | ✔ | |
17 | Linear OA(3151, 763, F3, 37) (dual of [763, 612, 38]-code) | [i] | ✔ | |
18 | Linear OA(3166, 781, F3, 38) (dual of [781, 615, 39]-code) | [i] | ✔ | |
19 | Linear OA(3162, 778, F3, 38) (dual of [778, 616, 39]-code) | [i] | ✔ | |
20 | Linear OA(3160, 772, F3, 38) (dual of [772, 612, 39]-code) | [i] | ✔ | |
21 | Linear OA(3171, 787, F3, 39) (dual of [787, 616, 40]-code) | [i] | ✔ | |
22 | Linear OA(3175, 790, F3, 40) (dual of [790, 615, 41]-code) | [i] | ✔ | |
23 | Linear OA(3169, 781, F3, 39) (dual of [781, 612, 40]-code) | [i] | ✔ | |
24 | Linear OA(3174, 785, F3, 40) (dual of [785, 611, 41]-code) | [i] | ✔ | |
25 | Linear OA(3171, 787, F3, 40) (dual of [787, 616, 41]-code) | [i] | ✔ | |
26 | Linear OA(3169, 785, F3, 39) (dual of [785, 616, 40]-code) | [i] | ✔ | |
27 | Linear OA(3169, 781, F3, 40) (dual of [781, 612, 41]-code) | [i] | ✔ | |
28 | Linear OA(3184, 799, F3, 41) (dual of [799, 615, 42]-code) | [i] | ✔ | |
29 | Linear OA(3183, 794, F3, 41) (dual of [794, 611, 42]-code) | [i] | ✔ | |
30 | Linear OA(3180, 796, F3, 41) (dual of [796, 616, 42]-code) | [i] | ✔ | |
31 | Linear OA(3178, 790, F3, 41) (dual of [790, 612, 42]-code) | [i] | ✔ |