Information on Result #706052

Linear OA(437, 255, F4, 13) (dual of [255, 218, 14]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−4,−3,…,8}, and designed minimum distance d ≥ |I|+1 = 14

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(437, 146, F4, 2, 13) (dual of [(146, 2), 255, 14]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(437, 146, F4, 3, 13) (dual of [(146, 3), 401, 14]-NRT-code) [i]
3Digital (24, 37, 146)-net over F4 [i]
4Linear OA(444, 279, F4, 13) (dual of [279, 235, 14]-code) [i]Construction XX with Cyclic Codes
5Linear OA(442, 277, F4, 12) (dual of [277, 235, 13]-code) [i]
6Linear OA(444, 282, F4, 13) (dual of [282, 238, 14]-code) [i]
7Linear OA(442, 276, F4, 13) (dual of [276, 234, 14]-code) [i]
8Linear OA(447, 278, F4, 14) (dual of [278, 231, 15]-code) [i]
9Linear OA(445, 275, F4, 14) (dual of [275, 230, 15]-code) [i]
10Linear OA(452, 283, F4, 15) (dual of [283, 231, 16]-code) [i]
11Linear OA(450, 280, F4, 15) (dual of [280, 230, 16]-code) [i]
12Linear OA(459, 290, F4, 17) (dual of [290, 231, 18]-code) [i]
13Linear OA(458, 282, F4, 17) (dual of [282, 224, 18]-code) [i]
14Linear OA(457, 287, F4, 17) (dual of [287, 230, 18]-code) [i]
15Linear OOA(437, 85, F4, 3, 13) (dual of [(85, 3), 218, 14]-NRT-code) [i]OOA Folding