Information on Result #706121

Linear OA(449, 255, F4, 17) (dual of [255, 206, 18]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {−4,−3,…,12}, and designed minimum distance d ≥ |I|+1 = 18

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(449, 171, F4, 2, 17) (dual of [(171, 2), 293, 18]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(449, 171, F4, 3, 17) (dual of [(171, 3), 464, 18]-NRT-code) [i]
3Digital (32, 49, 171)-net over F4 [i]
4Linear OA(459, 290, F4, 17) (dual of [290, 231, 18]-code) [i]Construction XX with Cyclic Codes
5Linear OA(458, 282, F4, 17) (dual of [282, 224, 18]-code) [i]
6Linear OA(458, 285, F4, 17) (dual of [285, 227, 18]-code) [i]
7Linear OA(456, 279, F4, 17) (dual of [279, 223, 18]-code) [i]
8Linear OA(454, 277, F4, 16) (dual of [277, 223, 17]-code) [i]
9Linear OA(457, 287, F4, 17) (dual of [287, 230, 18]-code) [i]
10Linear OA(456, 282, F4, 17) (dual of [282, 226, 18]-code) [i]
11Linear OA(454, 276, F4, 17) (dual of [276, 222, 18]-code) [i]
12Linear OA(464, 283, F4, 19) (dual of [283, 219, 20]-code) [i]
13Linear OA(471, 290, F4, 21) (dual of [290, 219, 22]-code) [i]
14Linear OA(469, 287, F4, 21) (dual of [287, 218, 22]-code) [i]
15Linear OOA(449, 85, F4, 3, 17) (dual of [(85, 3), 206, 18]-NRT-code) [i]OOA Folding